An embedded boundary integral solver for the stokes equations
نویسنده
چکیده
We present a new method for the solution of the Stokes equations. Our goal is to develop a robust and scalable methodology for two and three dimensional, moving-boundary, flow simulations. Our method is based on Anita Mayo’s method for the Poisson’s equation: “The Fast Solution of Poisson’s and the Biharmonic Equations on Irregular Regions”, SIAM J. Num. Anal., 21 (1984), pp. 285– 299. We embed the domain in a rectangular domain, for which fast solvers are available, and we impose the boundary conditions as interface (jump) conditions on the velocities and tractions. We use an indirect boundary integral formulation for the homogeneous Stokes equations to compute the jumps. The resulting integral equations are discretized by Nyström’s method. The rectangular domain problem is discretized by finite elements for a velocity-pressure formulation with equal order interpolation bilinear elements (Q1-Q1). Stabilization is used to circumvent the inf − sup condition for the pressure space. For the integral equations, fast matrix vector multiplications are achieved via a N log N algorithm based on a block representation of the discrete integral operator, combined with (kernel independent) singular value decomposition to sparsify low-rank blocks. Our code is built on top of PETSc, an MPI based parallel linear algebra library. The regular grid solver is a Krylov method (Conjugate Residuals) combined with an optimal two-level Schwartz-preconditioner. For the integral equation we use GMRES. We have tested our algorithm on several numerical examples and we have observed optimal convergence rates.
منابع مشابه
An Embedded Boundary Integral Solver for the Unsteady Incompressible Navier-Stokes Equations1
We present a new method for the solution of the unsteady incompressible Navier-Stokes equations. Our goal is to achieve a robust and scalable methodology for two and three dimensional incompressible laminar flows. The Navier-Stokes operator discretization is done using boundary integrals and structured-grid finite elements. We use a two-step second-order accurate scheme to advance the equations...
متن کاملAn Efficient and High-Order Accurate Boundary Integral Solver for the Stokes Equations in Three Dimensional Complex Geometries
This dissertation presents an efficient and high-order boundary integral solver for the Stokes equations in complex 3D geometries. The targeted applications of this solver are the flow problems in domains involving moving boundaries. In such problems, traditional finite element methods involving 3D unstructured mesh generation experience difficulties. Our solver uses the indirect boundary integ...
متن کاملA fast solver for the Stokes equations with distributed forces in complex geometries
We present a new method for the solution of the Stokes equations. The main features of our method are: (1) it can be applied to arbitrary geometries in a black-box fashion; (2) it is second-order accurate; and (3) it has optimal algorithmic complexity. Our approach, to which we refer as the embedded boundary integral method (EBI), is based on Anita Mayo s work for the Poisson s equation: ‘‘The ...
متن کاملDUAL BOUNDARY ELEMENT ANALYSIS OF CRACKED PLATES
The dual boundary element method is formulated for the analysis of linear elastic cracked plates. The dual boundary integral equations of the method are the displacement and the traction equations. When these equations are simultaneously applied along the crack boundaries, general crack problems can be solved in a single-region formulation, with both crack boundaries discretized with discontinu...
متن کاملCalculations of Unsteady Flow and Flutter by an Euler and Integral Boundary-Layer Method on Cartesian Grids
This paper presents an Euler and boundary-layer method capable of unsteady flow and aeroelastic simulations. An integral boundary-layer solver is coupled with an Euler solver in a “semi-inverse” manner. For the inviscid part, approximate wall boundaryconditions are implemented on non-moving mean chord positions, whereas the full nonlinear Euler equation is solved in the field for accurate resol...
متن کامل