Myofascial force transmission between a single muscle head and adjacent tissues: length effects of head III of rat EDL.
نویسندگان
چکیده
Force transmission from muscle fibers via the connective tissue network (i.e., myofascial force transmission) is an important determinant of muscle function. This study investigates the role of myofascial pathways for force transmission from multitendoned extensor digitorum longus (EDL) muscle within an intact anterior crural compartment. Effects of length changes exclusively of head III of rat EDL muscle (EDL III) on myofascial force transmission were assessed. EDL III was lengthened at the distal tendon. For different lengths of EDL III, isometric forces were measured at the distal tendon of EDL III, as well as at the proximal tendon of whole EDL and at the distal tendons of tibialis anterior and extensor hallucis longus (TA+EHL) muscles. Lengthening of EDL III caused high changes in force exerted at the distal tendon of EDL III (from 0 to 1.03 +/- 0.07 N). In contrast, only minor changes were found in force exerted at the proximal EDL tendon (from 2.37 +/- 0.09 to 2.53 +/- 0.10 N). Increasing the length of EDL III decreased TA+EHL force significantly (by 7%, i.e., from 5.62 +/- 0.27 to 5.22 +/- 0.32 N). These results show that force is transmitted between EDL III and adjacent tissues via myofascial pathways. Optimal force exerted at the distal tendon of EDL III (1.03 +/- 0.07 N) was more than twice the force expected on the basis of the physiological cross-sectional area of EDL III muscle fibers (0.42 N). Therefore, a substantial fraction of this force must originate from sources other than EDL III. It is concluded that myofascial pathways play an important role in force transmission from multitendoned muscles.
منابع مشابه
Myofascial force transmission also occurs between antagonistic muscles located within opposite compartments of the rat lower hind limb.
Force transmission via pathways other than myotendinous ones, is referred to as myofascial force transmission. The present study shows that myofascial force transmission occurs not only between adjacent synergistic muscles or antagonistic muscles in adjacent compartments, but also between most distant antagonistic muscles within a segment. Tibialis anterior (TA), extensor hallucis longus (EHL),...
متن کاملExtramuscular myofascial force transmission within the rat anterior tibial compartment: proximo-distal differences in muscle force.
Intramuscular connective tissues are continuous to extramuscular connective tissues. If force is transmitted there, differences should be present between force at proximal and distal attachments of muscles. Extensor digitorum longus (EDL), tibialis anterior (TA), and extensor hallucis longus muscles (EHL) were excited simultaneously and maximally. Only EDL length was changed, exclusively by mov...
متن کاملMyofascial force transmission: muscle relative position and length determine agonist and synergist muscle force.
Equal proximal and distal lengthening of rat extensor digitorum longus (EDL) were studied. Tibialis anterior, extensor hallucis longus, and EDL were active maximally. The connective tissues around these muscle bellies were left intact. Proximal EDL forces differed from distal forces, indicating myofascial force transmission to structures other than the tendons. Higher EDL distal force was exert...
متن کاملNon-myotendinous force transmission in rat extensor digitorum longus muscle.
The extensor digitorum longus muscle (EDL) of the rat hindleg consists of four heads. The heads are named after their insertions on the digits of toes II, III, IV and V. The EDL heads share a proximal tendon and aponeurosis, but have separate distal aponeuroses and tendons. By cutting the distal tendons of selected heads, direct myotendinous force transmission within these heads is prevented. T...
متن کاملMyofascial force transmission causes interaction between adjacent muscles and connective tissue: effects of blunt dissection and compartmental fasciotomy on length force characteristics of rat extensor digitorum longus muscle.
Muscles within the anterior tibial compartment (extensor digitorum longus: EDL, tibialis anterior: TA, and extensor hallucis longus muscles: EHL) and within the peroneal compartment were excited simultaneously and maximally. The ankle joint was fixed kept at 90 degrees. For EDL length force characteristics were determined. This was performed first with the anterior tibial compartment intact (1)...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of applied physiology
دوره 95 5 شماره
صفحات -
تاریخ انتشار 2003