Balance of XYL1 and XYL2 expression in different yeast chassis for improved xylose fermentation

نویسندگان

  • Jian Zha
  • Meng-Long Hu
  • Ming-Hua Shen
  • Bing-Zhi Li
  • Jing-Yu Wang
  • Ying-Jin Yuan
چکیده

Reducing xylitol formation is necessary in engineering xylose utilization in recombinant Saccharomyces cerevisiae for ethanol production through xylose reductase/xylitol dehydrogenase pathway. To balance the expression of XYL1 and mutant XYL2 encoding xylose reductase (XR) and NADP(+)-dependent xylitol dehydrogenase (XDH), respectively, we utilized a strategy combining chassis selection and direct fine-tuning of XYL1 and XYL2 expression in this study. A XYL1 gene under the control of various promoters of ADH1, truncated ADH1 and PGK1, and a mutated XYL2 with different copy numbers were constructed into different xylose-utilizing modules, which were then expressed in two yeast chassises W303a and L2612. The strategy enabled an improved L2612-derived recombinant strain with XYL1 controlled by promoter PGK1 and with two copies of XYL2. The strain exhibited a 21.3% lower xylitol yield and a 40.0% higher ethanol yield. The results demonstrate the feasibility of the combinatorial strategy for construction of an efficient xylose-fermenting S. cerevisiae.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Genetic analysis of D-xylose metabolism by endophytic yeast strains of Rhodotorula graminis and Rhodotorula mucilaginosa

Two novel endophytic yeast strains, WP1 and PTD3, isolated from within the stems of poplar (Populus) trees, were genetically characterized with respect to their xylose metabolism genes. These two strains, belonging to the species Rhodotorula graminis and R. mucilaginosa, respectively, utilize both hexose and pentose sugars, including the common plant pentose sugar, D-xylose. The xylose reductas...

متن کامل

Effects of gene orientation and use of multiple promoters on the expression of XYL1 and XYL2 in Saccharomyces cerevisiae.

Orientation of adjacent genes has been reported to affect their expression in eukaryotic systems, and metabolic engineering also often makes repeated use of a few promoters to obtain high expression. To improve transcriptional control in heterologous expression, we examined how these factors affect gene expression and enzymatic activity in Saccharomyces cerevisiae. We assembled D-xylose reducta...

متن کامل

Exploring xylose metabolism in Spathaspora species: XYL1.2 from Spathaspora passalidarum as the key for efficient anaerobic xylose fermentation in metabolic engineered Saccharomyces cerevisiae

BACKGROUND The production of ethanol and other fuels and chemicals from lignocellulosic materials is dependent of efficient xylose conversion. Xylose fermentation capacity in yeasts is usually linked to xylose reductase (XR) accepting NADH as cofactor. The XR from Scheffersomyces stipitis, which is able to use NADH as cofactor but still prefers NADPH, has been used to generate recombinant xylos...

متن کامل

Anaerobic xylose fermentation by recombinant Saccharomyces cerevisiae carrying XYL1, XYL2, and XKS1 in mineral medium chemostat cultures.

For ethanol production from lignocellulose, the fermentation of xylose is an economic necessity. Saccharomyces cerevisiae has been metabolically engineered with a xylose-utilizing pathway. However, the high ethanol yield and productivity seen with glucose have not yet been achieved. To quantitatively analyze metabolic fluxes in recombinant S. cerevisiae during metabolism of xylose-glucose mixtu...

متن کامل

Anaerobic growth and improved fermentation of Pichia stipitis bearing URA1 gene from Saccharomyces cerevisiae

Respiratory and fermentative pathways coexist to support growth and product formation in Pichia stipitis. This yeast grows rapidly without ethanol production under fully aerobic conditions. and it ferments glucose or xylose under oxygen-limited conditions. but it stops growing within one generation under anaerobic conditions. Expression of Saccharomyces cerevisiae URA1 (ScURA1) in P. stipitis e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2012