The Bar Derived Category of a Curved Dg Algebra

نویسنده

  • PEDRO NICOLÁS
چکیده

Curved A∞-algebras appear in nature as deformations of dg algebras. We develop the basic theory of curved A∞-algebras and, in particular, curved dg algebras. We investigate their link with a suitable class of dg coalgebras via the bar construction and produce Quillen model structures on their module categories. We define the analogue of the relative derived category for a curved dg algebra.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Vanishing of Some “derived” Categories of Curved Dg Algebras

Since curved dg algebras, and modules over them, have differentials whose square is not zero, these objects have no cohomology, and there is no classical derived category. For different purposes, different notions of “derived” categories have been introduced in the literature. In this note, we show that for some concrete curved dg algebras, these derived categories vanish. This happens for exam...

متن کامل

On the (non)vanishing of Some “derived” Categories of Curved Dg Algebras

Since curved dg algebras, and modules over them, have differentials whose square is not zero, these objects have no cohomology, and there is no classical derived category. For different purposes, different notions of “derived” categories have been introduced in the literature. In this note, we show that for some concrete curved dg algebras, these derived categories vanish. This happens for exam...

متن کامل

Koszul Differential Graded

The concept of Koszul differential graded algebra (Koszul DG algebra) is introduced. Koszul DG algebras exist extensively, and have nice properties similar to the classic Koszul algebras. A DG version of the Koszul duality is proved. When the Koszul DG algebra A is AS-regular, the Ext-algebra E of A is Frobenius. In this case, similar to the classical BGG correspondence, there is an equivalence...

متن کامل

Formality of the Constructible Derived Category for Spheres: a Combinatorial and a Geometric Approach

We describe the constructible derived category of sheaves on the n-sphere, stratified in a point and its complement, as a dg module category of a formal dg algebra. We prove formality by exploring two different methods: As a combinatorial approach, we reformulate the problem in terms of representations of quivers and prove formality for the 2-sphere, for coefficients in a principal ideal domain...

متن کامل

Fakultät für Elektrotechnik , Informatik und Mathematik Subcategories of Triangulated Categories and the Smashing Conjecture

In this thesis the global structure of three classes of algebraic triangulated categories is investigated by describing their thick, localizing and smashing subcategories and by analyzing the Smashing Conjecture. We show that the Smashing Conjecture for the stable module category of a self-injective artin algebra A is equivalent to the statement that a class of model categories associated with ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007