Suppressed fuzzy-soft learning vector quantization for MRI segmentation
نویسندگان
چکیده
OBJECTIVE A self-organizing map (SOM) is a competitive artificial neural network with unsupervised learning. To increase the SOM learning effect, a fuzzy-soft learning vector quantization (FSLVQ) algorithm has been proposed in the literature, using fuzzy functions to approximate lateral neural interaction of the SOM. However, the computational performance of FSLVQ is still not good enough, especially for large data sets. In this paper, we propose a suppressed FSLVQ (S-FSLVQ) using suppression with a parameter learning schema. We then apply the S-FSLVQ to MRI segmentation and compare it with several existing methods. METHODS AND MATERIALS The proposed S-FSLVQ algorithm and some existing methods, such as FSLVQ, generalized LVQ, revised generalized LVQ and alternative LVQ, are compared using numerical data and MRI images. The numerical data are generated by a mixture of normal distributions. The MRI data sets are from a 2-year-old female patient who was diagnosed with retinoblastoma of her left eye, a congenital malignant neoplasm of the retina with frequent metastasis beyond the lacrimal cribrosa. To evaluate the performance of these algorithms, two criteria for accuracy and computational efficiency are used. RESULTS Comparing S-FSLVQ with FSLVQ, generalized LVQ, revised generalized LVQ and alternative LVQ, the numerical results indicate that the S-FSLVQ algorithm is better than the other algorithms in accuracy and computational efficiency. Moreover, the proposed S-FSLVQ can reduce the computation time and increase accuracy compared to existing methods in segmenting these ophthalmological MRIs. CONCLUSIONS The proposed S-FSLVQ is a good competitive learning algorithm that is very suitable for segmenting the ophthalmological MRI data sets. Therefore, the S-FSLVQ algorithm is highly recommended for use in MRI segmentation as an aid for supportive diagnoses.
منابع مشابه
Performance Analysis of Fuzzy Competitive Learning Algorithms for MR Image Segmentation
Neuro-fuzzy approach have attracted considerable attention in the computational intelligence and segmentation algorithms have been increasingly in developed in improving the accuracy of medical diagnosis. Fuzzy set attempts to represent the human perception whereas neural network attempt to emulate the architecture and information representation scheme of human brain. In this paper a comparativ...
متن کاملMagnetic resonance imaging segmentation techniques using batch-type learning vector quantization algorithms.
In this article, we propose batch-type learning vector quantization (LVQ) segmentation techniques for the magnetic resonance (MR) images. Magnetic resonance imaging (MRI) segmentation is an important technique to differentiate abnormal and normal tissues in MR image data. The proposed LVQ segmentation techniques are compared with the generalized Kohonen's competitive learning (GKCL) methods, wh...
متن کاملIMAGE SEGMENTATION USING FUZZY LVQ CLUSTERING NETWORKS Eric
In this note we formulate image segmentation as a clustering problem. Feature vectors, extracted from a raw image are clustered into subregions, thereby segmenting the image. A fuzzy generalization of Kohonen learning vector quantization (LVQ) which integrates the Fuzzy cMeans (FCM) model with the learning rate and updating strategies of the LVQ Is used for this task. This network, which segmen...
متن کاملImage Segmentation Using Fuzzy Lvq Clustering Networks
In this note we formulate image segmentation as a clustering problem. Feature vectors, extracted from a raw image are clustered into subregions, thereby segmenting the image. A fuzzy generalization of Kohonen learning vector quantization (LVQ) which integrates the Fuzzy cMeans (FCM) model with the learning rate and updating strategies of the LVQ Is used for this task. This network, which segmen...
متن کاملImage Segmentation Using Fuzzy
In this note we formulate image segmentation as a clustering problem. Feature vectors, extracted from a raw image are clustered into subregions, thereby segmenting the image. A fuzzy generalization of Kohonen learning vector quantization (LVQ) which integrates the Fuzzy cMeans (FCM) model with the learning rate and updating strategies of the LVQ Is used for this task. This network, which segmen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Artificial intelligence in medicine
دوره 52 1 شماره
صفحات -
تاریخ انتشار 2011