Synthesis of stabilized myrrh-capped hydrocolloidal magnetite nanoparticles.

نویسندگان

  • Ayman M Atta
  • Hamad A Al-Lohedan
  • Sami A Al-Hussain
چکیده

Herein we report a new method for synthesizing stabilized magnetic nanoparticle (MNP) colloids. A new class of monodisperse water-soluble magnetite nano-particles was prepared by a simple and inexpensive co-precipitation method. Iron ions and iodine were prepared by the reaction between ferric chloride and potassium iodide. The ferrous and ferric ions were hydrolyzed at low temperature at pH 9 in the presence of iodine to produce iron oxide nanoparticles. The natural product myrrh gum was used as capping agent to produce highly dispersed coated magnetite nanoparticles. The structure and morphology of the magnetic nanogel was characterized by Fourier transform infrared spectroscopy (FTIR) and transmission electron microscopy (TEM), and X-ray diffraction (XRD) was used to examine the crystal structure of the produced magnetite nanoparticles.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Stage Dependent Effect of Capping Agent Introduction in the Synthesis of Magnetite Nanoparticles

In this paper, three techniques to obtain capped magnetite nanoparticles were compared. In the formation of magnetite nanoparticles via the co-precipitation route, capping agents were introduced pre-, simultaneously with, or post-addition of the precipitating agent, ammonia. The amino acids L-glutamine and L-glutamic acid were used as the capping agents. Characterization via TEM, pXRD, EDX, and...

متن کامل

One-Pot Green Synthesis and Bioapplication ofl-Arginine-Capped Superparamagnetic Fe3O4 Nanoparticles

Water-solublel-arginine-capped Fe3O4 nanoparticles were synthesized using a one-pot and green method. Nontoxic, renewable and inexpensive reagents including FeCl3,l-arginine, glycerol and water were chosen as raw materials. Fe3O4 nanoparticles show different dispersive states in acidic and alkaline solutions for the two distinct forms of surface bindingl-arginine. Powder X-ray diffraction and X...

متن کامل

Removal of Ni (II) ions from Aqueous Solutions Using Origanum majorana-Capped Silver NanoParticles Synthesis Eequilibrium

The applicability of Origanum majorana-Capped Silver nanoparticles synthesis for removing Ni (II) ions from aqueous solutions has been reported. This novel material was characterized by different techniques such as FT-IR, XRD and SEM. The influence of nanoparticle dosage, pH of the sample solution, individual ions concentration, temperature, contact time between the sample and the adsorbent wer...

متن کامل

Effectiveness of Magnetite Nanoparticles stabilized by 3-hydroxypyridine Derivative and Polyvinyl Pyrrolidone in Experimental Therapy of Acute blood Loss

One of the preconditions of biomedical use of iron oxide nanoparticles including magnetite is their stabilization in liquid medium, wherein the covering substances largely determine pharmacological activity and toxicity of such nanoparticles. we obtained nanofluid that contains magnetite nanoparticles stabilized with 2-ethyl-6-methyl-3-hydroxypyridine succinate (Mexidol) and polyvinyl pyrrolido...

متن کامل

Design and Evaluation and Synthesis a Starch-Capped Silver NanoParticles Sensor and Determination trace Sulfacetamide Drug in the Presence Sodium borohydride in Blood and Urine Samples with Kinetic Spectrophotometric Method

A new Kinetic Spectrophotometic method for the Determination of trace amount Sulfacetamide Drug into real samples has been described based with silver nanoparticles starch-capped sensor, by sodium borohydride. The reaction is followed spectrophotometrically by measuring the decrease in the absorbance at 347.5 nm. 1.0×10-2 molL-1 silver nanoparticles starch-capped sensor, 2.0×10-3 mol L-1 sodium...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecules

دوره 19 8  شماره 

صفحات  -

تاریخ انتشار 2014