Effects of experimental colitis on the expressions of calcitonin gene-related peptide and vanilloid receptor 1 in rat spinal cord sensory neurons.
نویسندگان
چکیده
To study the acute and long-term effects of local gut inflammation on the sensitivity of the spinal sensory neurons, the expressions of vanilloid receptor 1 (VR1) and calcitonin gene-related peptide (CGRP) in the colon-innervated primary sensory neurons in dorsal root ganglia (DRG) were examined in rats with trinitrobenzenesulfonic acid (TNBS)-induced experimental colitis. The neurons projecting to the distal colon were identified by DiI(3) retrograde labelling. Macroscopic examination, mean damage score and myeloperoxidase (MPO) activity were determined to assess the inflammatory status of the colon tissue. The number of CGRP and VR1 immunoreactive neurons at different stages of inflammation (on days 7, 21 and 42 after TNBS treatment) were compared. On day 7 after TNBS treatment, macroscopic damage of the mucosa could be easily detected and the percentage of colon-innervated DRG neurons expressing CGRP and VR1 increased nearly two folds respectively [(95.38±9.45)% vs (42.86±.02)% for CGRP, (89.23±8.21)% vs (32.54±4.58)% for VR1]. When the colon inflammatory reaction was resolved on days 21 and 42 after TNBS treatment, the percentage of colon-innervated DRG neurons expressing CGRP and VR1 were still higher than that in the control group [(86.25±8.21)%, (68.28±7.12)% vs (42.86±5.02)% for CGRP; (67.22±6.52)%, (56.25±4.86)% vs (32.54±4.58)% for VR1]. These results suggest that the local gut inflammation increases the expressions of CGRP and VR1 in gut-innervated DRG sensory neurons. More importantly, this abnormal status persists even after the gut inflammatory reaction has been resolved for certain time.
منابع مشابه
Anandamide excites central terminals of dorsal root ganglion neurons via vanilloid receptor-1 activation.
Recently, the cannabinoid (CB) receptor agonist anandamide (AEA) has been shown to excite perivascular terminals of primary sensory neurons via activation of the vanilloid receptor-1 (VR-1). To determine whether AEA stimulates central terminals of these neurons, via VR-1 activation, we studied the release of calcitonin gene-related peptide (CGRP)- and substance P (SP)-like immunoreactivities (L...
متن کاملSustained morphine treatment augments capsaicin-evoked calcitonin gene-related peptide release from primary sensory neurons in a protein kinase A- and Raf-1-dependent manner.
Studies have shown that long-term (5alpha,6alpha)-7,8-didehydro-4,5-epoxy-17-methylmorphinan-3,6-diol (morphine) treatment increases the sensitivity to painful heat stimuli (thermal hyperalgesia). The cellular adaptations contributing to sustained morphine-mediated pain sensitization are not fully understood. It was shown previously (J Neurosci 22:6747-6755, 2002) that sustained morphine exposu...
متن کاملAtrial natriuretic peptide reduces ischemia/reperfusion-induced spinal cord injury in rats by enhancing sensory neuron activation.
We recently demonstrated that calcitonin gene-related peptide (CGRP) released from sensory neurons reduces spinal cord injury (SCI) by inhibiting neutrophil activation through an increase in the endothelial production of prostacyclin (PGI(2)). Carperitide, a synthetic alpha-human atrial natriuretic peptide (ANP), reduces ischemia/reperfusion (I/R)-induced tissue injury. However, its precise the...
متن کامل(R)-(5-tert-butyl-2,3-dihydro-1H-inden-1-yl)-3-(1H-indazol-4-yl)-urea (ABT-102) blocks polymodal activation of transient receptor potential vanilloid 1 receptors in vitro and heat-evoked firing of spinal dorsal horn neurons in vivo.
The transient receptor potential vanilloid (TRPV) 1 receptor, a nonselective cation channel expressed on peripheral sensory neurons and in the central nervous system, plays a key role in pain. TRPV1 receptor antagonism is a promising approach for pain management. In this report, we describe the pharmacological and functional characteristics of a structurally novel TRPV1 antagonist, (R)-(5-tert-...
متن کاملNeurotransmitters and receptors in the dorsal horn of the spinal cord
Modulation of the sensory input can occur within the dorsal horn of the spinal cord where the primary afferent fibers synapse with neurons that transmit to the higher centers. The transmission of the sensory information begins with activation of the peripheral receptors of primary afferent neurons whose cell bodies lie within the dorsal root ganglia and whose central terminals project to second...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Sheng li xue bao : [Acta physiologica Sinica]
دوره 60 1 شماره
صفحات -
تاریخ انتشار 2008