Increased mutability and decreased repairability of a three-lesion clustered DNA-damaged site comprised of an AP site and bi-stranded 8-oxoG lesions

نویسندگان

  • Siobhan Cunniffe
  • Alexandra Walker
  • Robert Stabler
  • Peter O’Neill
  • Martine E. Lomax
چکیده

PURPOSE Ionizing radiation induces DNA damage, some of which are present in clusters, defined as two or more lesions within one to two helical turns of DNA by passage of a single radiation track. These clusters are thought to contribute to the detrimental effects of radiation, in part due to the compromised repair of clustered DNA damaged sites. MATERIALS AND METHODS The repair of three-lesion cluster present in oligonucleotides were determined in vitro using the hamster cell line CHO-K1 nuclear extract or purified proteins involved in base excision repair. The mutagenic potential of these clusters present in a plasmid was determined using an Escherichia coli reporter assay. RESULTS We have shown that the repair of an abasic (AP) site within a three-lesion cluster, comprised of an AP site and bi-stranded 8-oxo-7,8-dihydroguanine (8-oxoG) lesions, is retarded compared to that of an isolated AP site in an in vitro base excision repair (BER) assay. Further, the mutation frequency of the clustered damaged site is up to three times greater than that of an isolated 8-oxoG lesion. CONCLUSIONS As a consequence of enhanced mutagenic potential of clusters, non-double-strand break (DSB) DNA damage may contribute to the detrimental effects of radiation, in addition to the effects of DSB.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hierarchy of lesion processing governs the repair, double-strand break formation and mutability of three-lesion clustered DNA damage

Ionising radiation induces clustered DNA damage sites which pose a severe challenge to the cell's repair machinery, particularly base excision repair. To date, most studies have focussed on two-lesion clusters. We have designed synthetic oligonucleotides to give a variety of three-lesion clusters containing abasic sites and 8-oxo-7, 8-dihydroguanine to investigate if the hierarchy of lesion pro...

متن کامل

Processing of thymine glycol in a clustered DNA damage site: mutagenic or cytotoxic

Localized clustering of damage is a hallmark of certain DNA-damaging agents, particularly ionizing radiation. The potential for genetic change arising from the effects of clustered damage sites containing combinations of AP sites, 8-oxo-7,8-dihydroguanine (8-oxoG) or 5,6-dihydrothymine is high. To date clusters containing a DNA base lesion that is a strong block to replicative polymerases, have...

متن کامل

Excision of 8-oxoguanine within clustered damage by the yeast OGG1 protein.

Clustered damages are formed in DNA by ionising radiation and radiomimetic anticancer agents and are thought to be biologically severe. 7,8-dihydro-8-oxoguanine (8-oxoG), a major DNA damage resulting from oxidative attack, is highly mutagenic leading to a high level of G.C-->T.A transversions if not previously excised by OGG1 DNA glycosylase/AP lyase proteins in eukaryotes. However, 8-oxoG with...

متن کامل

Clustered DNA Lesions Containing 5-Formyluracil and AP Site: Repair via the BER System

Lesions in the DNA arise under ionizing irradiation conditions or various chemical oxidants as a single damage or as part of a multiply damaged site within 1-2 helical turns (clustered lesion). Here, we explored the repair opportunity of the apurinic/apyrimidinic site (AP site) composed of the clustered lesion with 5-formyluracil (5-foU) by the base excision repair (BER) proteins. We found, tha...

متن کامل

Base excision repair processing of abasic site/single-strand break lesions within clustered damage sites associated with XRCC1 deficiency

Ionizing radiation induces clustered DNA damage, which presents a challenge to the cellular repair machinery. The repair efficiency of a single-strand break (SSB) is approximately 4x less than that for repair of an abasic (AP) site when in a bistranded cluster containing 8-oxoG. To explore whether this difference in repair efficiency involves XRCC1 or other BER proteins, synthetic oligonucleoti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 90  شماره 

صفحات  -

تاریخ انتشار 2014