Parallel implementations of the MinMin heterogeneous computing scheduler in GPU
نویسندگان
چکیده
This work presents parallel implementations of the MinMin scheduling heuristic for heterogeneous computing using Graphic Processing Units, in order to improve its computational efficiency. The experimental evaluation of the four proposed MinMin variants demonstrates that a significant reduction on the computing times can be attained, allowing to tackle large scheduling scenarios in reasonable execution times.
منابع مشابه
Implementation of the direction of arrival estimation algorithms by means of GPU-parallel processing in the Kuda environment (Research Article)
Direction-of-arrival (DOA) estimation of audio signals is critical in different areas, including electronic war, sonar, etc. The beamforming methods like Minimum Variance Distortionless Response (MVDR), Delay-and-Sum (DAS), and subspace-based Multiple Signal Classification (MUSIC) are the most known DOA estimation techniques. The mentioned methods have high computational complexity. Hence using...
متن کاملParallel Implementation of Particle Swarm Optimization Variants Using Graphics Processing Unit Platform
There are different variants of Particle Swarm Optimization (PSO) algorithm such as Adaptive Particle Swarm Optimization (APSO) and Particle Swarm Optimization with an Aging Leader and Challengers (ALC-PSO). These algorithms improve the performance of PSO in terms of finding the best solution and accelerating the convergence speed. However, these algorithms are computationally intensive. The go...
متن کاملAccelerating high-order WENO schemes using two heterogeneous GPUs
A double-GPU code is developed to accelerate WENO schemes. The test problem is a compressible viscous flow. The convective terms are discretized using third- to ninth-order WENO schemes and the viscous terms are discretized by the standard fourth-order central scheme. The code written in CUDA programming language is developed by modifying a single-GPU code. The OpenMP library is used for parall...
متن کاملA Hybrid Parallel Spatial Interpolation Algorithm for Massive LiDAR Point Clouds on Heterogeneous CPU-GPU Systems
Nowadays, heterogeneous CPU-GPU systems have become ubiquitous, but current parallel spatial interpolation (SI) algorithms exploit only one type of processing unit, and thus result in a waste of parallel resources. To address this problem, a hybrid parallel SI algorithm based on a thin plate spline is proposed to integrate both the CPU and GPU to further accelerate the processing of massive LiD...
متن کاملHigh-speed parallel implementations of the rainbow method based on perfect tables in a heterogeneous system
The computing power of graphics processing units (GPU) has increased rapidly, and there has been extensive research on general-purpose computing on GPU (GPGPU) for cryptographic algorithms such as RSA, ECC, NTRU, and AES. With the rise of GPGPU, commodity computers have become complex heterogeneous GPU+CPU systems. This new architecture poses new challenges and opportunities in high-performance...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CLEI Electron. J.
دوره 15 شماره
صفحات -
تاریخ انتشار 2012