Regulation of corticotropin-releasing factor-binding protein expression in amygdalar neuronal cultures.
نویسندگان
چکیده
Corticotropin-releasing factor-binding protein (CRF-BP) is known to regulate the bioavailability of CRF and may also play a role in stress behaviours. CRF-BP has been localized in the pituitary as well as central nervous system (CNS) limbic and cortical areas, including the amygdala. The signal transduction pathways which regulate amygdalar CRF-BP are not well understood. In this report, we have examined the effect of protein kinase A and C activators, CRF, dexamethasone and interleukin-6 (IL6) on CRF-BP mRNA and protein expression in dissociated fetal amygdalar cultures. CRF-BP mRNA levels were determined by Northern analysis following 12 h treatment with the following agents: forskolin (1-30 microM), CRF (1-1000 nM), phorbol-12-myristate-13-acetate (TPA; 1-50 nM), dexamethasone (1-100 nM) and IL6 (10-500 pM). Significant increases in CRF-BP mRNA were observed in response to forskolin (30 mM), CRF (100, 1000 nM), IL6 (100, 500 pM), TPA (50 nM) and dexamethasone (100 nM; P<0.05 for all; n=3-6 for all). We extended our observations of CRF-BP expression to the protein level by performing semiquantitative Western analysis of total cellular protein after treatment with the same agents. Twenty-four hour treatment with 30 microM forskolin, 1000 nM CRF, 50 nM TPA, 100 pM IL6 or 100 nM dexamethasone significantly increased CRF-BP expression (P<0.05, n=3 for each treatment). The primary cultures were then transfected with a rat CRF-BP-reporter construct containing 3500 base pairs of CRF-BP 5' flanking DNA. Treatment with all five agents produced statistically significant increases above control (P<0.05; n=3 for each). The results suggest that CRF-BP in the amygdala is stimulated by numerous pathways which may play a significant role in promoting behavioural changes.
منابع مشابه
Brain region-specific neuroprotective action and signaling of corticotropin-releasing hormone in primary neurons.
CRH regulates the body's response to stressful stimuli by modulating the activity of the hypothalamic pituitary axis. In primary cultures and cell lines, CRH also acts as a potent neuroprotective factor in response to a number of toxins. Using primary neuronal cultures from the cerebellum, cerebral cortex, and hippocampus, we demonstrate that CRH exerts a brain region-specific neuroprotective e...
متن کاملRegulation of the expression of corticotropin-releasing factor gene by pyroglutamylated RFamide peptide in rat hypothalamic 4B cells.
Pyroglutamylated RFamide peptide (QRFP), an important regulator of metabolism and energy homeostasis, has orexigenic effects. QRFP acts via a specific receptor, Gpr103. Gpr103 mRNA is expressed in the rat hypothalamic paraventricular nucleus (PVN). In the PVN, corticotropin-releasing factor (CRF), which plays a central role in regulating the stress response and is produced in response to stress...
متن کاملCorticotropin-releasing factor immunoreactivity is widely distributed within the central nervous system of the rat: an immunohistochemical study.
The discovery of a 41-amino acid peptide with potent corticotropin-releasing factor properties has prompted a search for neurons that contain this substance and potentially utilize it in intercellular communication. The present study utilized immunohistochemical methods and an antiserum directed against a synthetic replica of ovine corticotropin-releasing factor. The rat hypothalamus was found ...
متن کامل(54) Methods of Treating Anxiety and Mood Disorders with Oleamide
Arato M. Banki CM, Bissette G, Nemeroff CB, Elevated CSF CRH in suicide victims. Biological Psychiatry 1989;25:355—359. Baker DG, West SA, Nicholson WE, Ekhator NN, KasckoW JW, Hill KK, Bruce AB, Orth DN, Geracioti TD Jr. Serial CSF corticotropin—releasing hormone levels and adrenocor tical activity in combat veterans With post—traumatic stress disorder. Am J Psychiatry 1999;156:585—588. Banki ...
متن کاملRegulation of pituitary thyrotropin gene expression during Xenopus metamorphosis: negative feedback is functional throughout metamorphosis.
Several hypotheses have been proposed to explain the increase and sustained expression of pituitary thyrotropin (TSH) in the presence of elevated plasma thyroid hormone (TH) concentrations at metamorphic climax in amphibians. It has been proposed that the negative feedback of TH on TSH is inoperative until metamorphic climax, and that it is established at this time by the upregulation of pituit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neuroendocrinology
دوره 11 12 شماره
صفحات -
تاریخ انتشار 1999