Carbon monoxide-releasing molecules reverse leptin resistance induced by endoplasmic reticulum stress.
نویسندگان
چکیده
Leptin, a circulating hormone, regulates food intake and body weight. While leptin resistance represents a major cause of obesity, the underlying mechanisms remain unclear. Endoplasmic reticulum (ER) stress can contribute to leptin resistance. Carbon monoxide (CO), a gaseous molecule, exerts antiapoptotic and anti-inflammatory effects in animal models of tissue injury. We hypothesized that CO could inhibit leptin resistance during ER stress. Thapsigargin or tunicamycin was used to induce ER stress in human cells expressing the leptin receptor. These agents markedly inhibited leptin-induced STAT3 phosphorylation, confirming that ER stress induces leptin resistance. The CO-releasing molecule CORM-2 blocked the ER stress-dependent inhibition of leptin-induced STAT3 phosphorylation. CORM-2 treatment induced the phosphorylation of protein kinase R-like endoplasmic reticulum kinase (PERK), and eukaryotic translation initiation factor-2α and enhanced PERK phosphorylation during ER stress. Furthermore, CORM-2 inhibited X-box binding protein-1 expression, activating transcription factor-6 cleavage, and inositol-requiring enzyme (IRE)1α phosphorylation induced by ER stress. IRE1α knockdown rescued leptin resistance, whereas PERK knockdown blocked CO-dependent regulation of IRE1α. In vivo, CO inhalation normalized body weight in animals fed high-fat diets. Furthermore, CO modulated ER stress pathways and rescued leptin resistance in vivo. In conclusion, the pathological mechanism of leptin resistance may be ameliorated by the pharmacological application of CO.
منابع مشابه
Pretreatment with carbon monoxide releasing molecules suppresses hepcidin expression during inflammation and endoplasmic reticulum stress through inhibition of the STAT3 and CREBH pathways
School of Biological Sciences, WCU, University of Ulsan, Meta-Inflammation Basic Research Laboratory, Ulsan, Republic of Korea, Department of Microbiology and Immunology, Wonkwang University School of Medicine, Iksan, Republic of Korea Department of Pharmacology and Department of Anatomy, School of Medicine, and Institute of Health Sciences, Gyeongsang National University, Jinju, 660-751, Korea...
متن کاملEndoplasmic reticulum stress induces leptin resistance.
Leptin is an important circulating signal for inhibiting food intake and body weight gain. In recent years, "leptin resistance" has been considered to be one of the main causes of obesity. However, the detailed mechanisms of leptin resistance are poorly understood. Increasing evidence has suggested that stress signals, which impair endoplasmic reticulum (ER) function, lead to an accumulation of...
متن کاملPretreatment with CO-releasing molecules suppresses hepcidin expression during inflammation and endoplasmic reticulum stress through inhibition of the STAT3 and CREBH pathways.
The circulating peptide hormone hepcidin maintains systemic iron homeostasis. Hepcidin production increases during inflammation and as a result of endoplasmic reticulum (ER) stress. Elevated hepcidin levels decrease dietary iron absorption and promote iron sequestration in reticuloendothelial macrophages. Furthermore, increased plasma hepcidin levels cause hypoferremia and the anemia associated...
متن کاملFluvoxamine Attenuated Endoplasmic Reticulum Stress-Induced Leptin Resistance
Increasing evidence indicates that endoplasmic reticulum stress (ER stress) is involved in the development of metabolic syndrome. However, pharmacological treatments targeting ER stress are not well understood. In the present study, we found that fluvoxamine, a selective serotonin reuptake inhibitor used for depression, can attenuate ER stress-induced "leptin resistance," i.e., insensitivity to...
متن کاملFlurbiprofen ameliorated obesity by attenuating leptin resistance induced by endoplasmic reticulum stress
Endoplasmic reticulum (ER) stress, caused by the accumulation of unfolded proteins, is involved in the development of obesity. We demonstrated that flurbiprofen, a nonsteroidal anti-inflammatory drug (NSAID), exhibited chaperone activity, which reduced protein aggregation and alleviated ER stress-induced leptin resistance, characterized by insensitivity to the actions of the anti-obesity hormon...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Endocrinology and metabolism
دوره 304 7 شماره
صفحات -
تاریخ انتشار 2013