Site-Specific Proteomic Mapping Identifies Selectively Modified Regulatory Cysteine Residues in Functionally Distinct Protein Networks.
نویسندگان
چکیده
S-Acylation, S-glutathionylation, S-nitrosylation, and S-sulfenylation are prominent, chemically distinct modifications that regulate protein function, redox sensing, and trafficking. Although the biological significance of these modifications is increasingly appreciated, their integration in the proteome remains unknown. Novel mass spectrometry-based technologies identified 2,596 predominately unique sites in 1,319 mouse liver proteins under physiological conditions. Structural analysis localized the modifications in unique, evolutionary conserved protein segments, outside commonly annotated functional regions. Contrary to expectations, propensity for modification did not correlate with biophysical properties that regulate cysteine reactivity. However, the in vivo chemical reactivity is fine-tuned for specificity, demonstrated by the nominal complementation between the four modifications and quantitative proteomics which showed that a reduction in S-nitrosylation is not correlated with increased S-glutathionylation. A comprehensive survey uncovered clustering of modifications within biologically related protein networks. The data provide the first evidence for the occurrence of distinct, endogenous protein networks that undergo redox signaling through specific cysteine modifications.
منابع مشابه
Landmark mapping: a general method for localizing cysteine residues within a protein.
We describe a general method to locate the positions of cysteine residues relative to the amino terminus of a protein, using a modified chemical cleavage of the polypeptide backbone at cysteine. The cleavage reaction introduces the carbon atom of 14CN into the carboxyl-terminal fragment produced at each cleavage of the polypeptide chain. Peptides containing the amino terminus of the intact prot...
متن کاملCombining fluorescence detection and mass spectrometric analysis for comprehensive and quantitative analysis of redox-sensitive cysteines in native membrane proteins.
Monobromobimane (MBB) is a lipophilic reagent that selectively modifies free cysteine residues in proteins. Because of its lipophilic character, MBB is capable of labeling cysteine residues in membrane proteins under native conditions. Reaction of MBB with the sulfhydryl groups of free cysteines leads to formation of highly fluorescent derivatives. Here we describe a procedure for the detection...
متن کاملMitochondrial thiol oxidase Erv1: both shuttle cysteine residues are required for its function with distinct roles
Erv1 (essential for respiration and viability 1), is an essential component of the MIA (mitochondrial import and assembly) pathway, playing an important role in the oxidative folding of mitochondrial intermembrane space proteins. In the MIA pathway, Mia40, a thiol oxidoreductase with a CPC motif at its active site, oxidizes newly imported substrate proteins. Erv1 a FAD-dependent thiol oxidase, ...
متن کاملMapping protein-protein interactions between MutL and MutH by cross-linking.
Strand discrimination in Escherichia coli DNA mismatch repair requires the activation of the endonuclease MutH by MutL. There is evidence that MutH binds to the N-terminal domain of MutL in an ATP-dependent manner; however, the interaction sites and the molecular mechanism of MutH activation have not yet been determined. We used a combination of site-directed mutagenesis and site-specific cross...
متن کاملGlobal Proteomic Assessment of the Classical Protein-Tyrosine Phosphatome and “Redoxome”
Protein-tyrosine phosphatases (PTPs), along with protein-tyrosine kinases, play key roles in cellular signaling. All Class I PTPs contain an essential active site cysteinyl residue, which executes a nucleophilic attack on substrate phosphotyrosyl residues. The high reactivity of the catalytic cysteine also predisposes PTPs to oxidation by reactive oxygen species, such as H(2)O(2). Reversible PT...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Chemistry & biology
دوره 22 7 شماره
صفحات -
تاریخ انتشار 2015