Neuro-fuzzy Modeling for Crop Yield Prediction
نویسندگان
چکیده
The purpose of this paper is to explore the dynamics of neural networks in forecasting crop (wheat) yield using remote sensing and other data. We use the Adaptive Neuro-Fuzzy Inference System (ANFIS). The input to ANFIS are several parameters derived from the crop growth simulation model (CGMS) including soil moisture content, above ground biomass, and storage organs biomass. In addition we use remote sensing information in the form of the Normalized Difference Vegetation Index (NDVI). ANFIS has only one output node, the yield. In other words a single number is sought. An additional difficulty in predicting yield is that remote sensing data do not go long back in time. Hence any predicting effort is forced to use a very limited number of past years in order to construct a model to forecast future values. The system is trained by leaving one year out and using all the other data. We then evaluate the deviation of our estimate compared to the yield of the year that is left out. The procedure is applied to all the years and the average forecasting accuracy is given.
منابع مشابه
Adaptive Neuro-Fuzzy Modeling For Crop Yield Prediction
Most of greenhouse growers desire a determined amount of yields in order to accurately meet market requirements. The purpose of this paper is to explore the dynamics of neural networks in forecasting crop (tomato) yield using environmental variables; here we aim at giving accurate yield amount. We use the Adaptive Neuro-Fuzzy Inference System (ANFIS). The input to ANFIS is several parameters de...
متن کاملAdaptive Online Traffic Flow Prediction Using Aggregated Neuro Fuzzy Approach
Short term prediction of traffic flow is one of the most essential elements of all proactive traffic control systems. Although various methodologies have been applied to forecast traffic parameters, several researchers have showed that compared with the individual methods, hybrid methods provide more accurate results . These results made the hybrid tools and approaches a more common method for ...
متن کاملPrediction of Thermal performance nanofluid Al2O3 by Artificial Neural Network and Adaptive Neuro-Fuzzy Inference Systemt
In recent years, the use of modeling methods that directly utilize empirical data is increasing due to the high accuracy in predicting the results of the process, rather than statistical methods. In this paper, the ability of Artificial Neural Network (ANN) and Adaptive Fuzzy-Neural Inference System (ANFIS) models in the prediction of the thermal performance of Al2O3 nanofluid that is measured ...
متن کاملCOD Removal Prediction of DAF Unit Refinery Wastewater by Using Neuro- Fuzzy Systems (ANFIS) (Short Communication)
In this study the Dissolved Air Flotation (DAF) system in oil refinery was investigated for the treatment of refinery wastewater. In order to investigate sytem a labratory scale rig was built. The aim is to remove some of the wastewater pollutant materials and data modeling of COD test.The effect of several parameters on flotation efficiency namely, saturator pressure, and coagulant dose, on CO...
متن کاملComparison of autoregressive integrated moving average (ARIMA) model and adaptive neuro-fuzzy inference system (ANFIS) model
Proper models for prediction of time series data can be an advantage in making important decisions. In this study, we tried with the comparison between one of the most useful classic models of economic evaluation, auto-regressive integrated moving average model and one of the most useful artificial intelligence models, adaptive neuro-fuzzy inference system (ANFIS), investigate modeling procedur...
متن کامل