Multivariate Matching Methods That Are Monotonic Imbalance Bounding

نویسندگان

  • Stefano M. IACUS
  • Giuseppe PORRO
چکیده

We introduce a new “Monotonic Imbalance Bounding” (MIB) class of matching methods for causal inference with a surprisingly large number of attractive statistical properties. MIB generalizes and extends in several new directions the only existing class, “Equal Percent Bias Reducing” (EPBR), which is designed to satisfy weaker properties and only in expectation. We also offer strategies to obtain specific members of the MIB class, and analyze in more detail a member of this class, called Coarsened Exact Matching, whose properties we analyze from this new perspective. We offer a variety of analytical results and numerical simulations that demonstrate how members of the MIB class can dramatically improve inferences relative to EPBR-based matching methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Causal Inference Without Balance Checking: Coarsened Exact Matching

We discuss a method for improving causal inferences called ‘‘Coarsened Exact Matching’’ (CEM), and the new ‘‘Monotonic Imbalance Bounding’’ (MIB) class of matching methods from which CEM is derived. We summarize what is known about CEM and MIB, derive and illustrate several new desirable statistical properties of CEM, and then propose a variety of useful extensions. We show that CEM possesses a...

متن کامل

Bounding cochordal cover number of graphs via vertex stretching

It is shown that when a special vertex stretching is applied to a graph, the cochordal cover number of the graph increases exactly by one, as it happens to its induced matching number and (Castelnuovo-Mumford) regularity. As a consequence, it is shown that the induced matching number and cochordal cover number of a special vertex stretching of a graph G are equal provided G is well-covered bipa...

متن کامل

Deriving Monotonic Function Envelopes from Observations*

Much work in qualitative physics involves constructing models of physical systems using functional descriptions such as "flow monotonically increases with pressure." Semiquantitative methods improve model precision by adding numerical envelopes to these monotonic functions . Ad hoc methods are normally used to determine these envelopes. This paper describes a systematic method for computing a b...

متن کامل

cem: Coarsened Exact Matching in Stata

This paper introduces a Stata implementation of Coarsened Exact Matching (CEM), a new method for improving the estimation of causal effects by reducing imbalance in covariates between treated and control groups. CEM is faster, easier to use and understand, requires fewer assumptions, more easily automated, and possesses more attractive statistical properties for many applications than existing ...

متن کامل

Matching Methods for High-Dimensional Data with Applications to Text∗

Matching is a popular technique for preprocessing observational data to facilitate causal inference and reduce model dependence by ensuring that treated and control units are balanced along pre-treatment covariates. While most applications of matching balance on a small number of covariates, we identify situations where matching with thousands of covariates may be desirable, such as causal infe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009