Ferns are less dependent on passive dilution by cell expansion to coordinate leaf vein and stomatal spacing than angiosperms
نویسندگان
چکیده
Producing leaves with closely spaced veins is a key innovation linked to high rates of photosynthesis in angiosperms. A close geometric link between veins and stomata in angiosperms ensures that investment in enhanced venous water transport provides the strongest net carbon return to the plant. This link is underpinned by "passive dilution" via expansion of surrounding cells. However, it is not known whether this 'passive dilution' mechanism is present in plant lineages other than angiosperms and is another key feature of the angiosperms' evolutionary success. Consequently, we sought to determine whether the 'passive dilution' mechanism is; (i) exclusive to the angiosperms, (ii) a conserved mechanism that evolved in the common ancestor of ferns and angiosperms, or (iii) has evolved continuously over time. To do this we first we assessed the plasticity of vein and stomatal density and epidermal cell size in ferns in response to light environment. We then compared the relationships between these traits found among ferns with modelled relationships that assume vein and stomatal density respond passively to epidermal cell expansion, and with those previously observed in angiosperms. Vein density, stomatal density and epidermal cell size were linked in ferns with remarkably similar relationships to those observed in angiosperms, except that fern leaves had fewer veins per stomata. However, plasticity was limited in ferns and stomatal spacing was dependent on active stomatal differentiation as well as passive cell expansion. Thus, ferns (like angiosperms) appear to coordinate vein and stomatal density with epidermal cell expansion to some extent to maintain a constant ratio between veins and stomata in the leaf. The different general relationships between vein density and stomatal density in ferns and angiosperms suggests the groups have different optimum balances between the production of vein tissue dedicated to water supply and stomatal tissue for gas exchange.
منابع مشابه
Separating active and passive influences on stomatal control of transpiration.
Motivated by studies suggesting that the stomata of ferns and lycophytes do not conform to the standard active abscisic acid (ABA) -mediated stomatal control model, we examined stomatal behavior in a conifer species (Metasequoia glyptostroboides) that is phylogenetically midway between the fern and angiosperm clades. Similar to ferns, daytime stomatal closure in response to moderate water stres...
متن کاملLeaf Photosynthetic Rate of Tropical Ferns Is Evolutionarily Linked to Water Transport Capacity
Ferns usually have relatively lower photosynthetic potential than angiosperms. However, it is unclear whether low photosynthetic potential of ferns is linked to leaf water supply. We hypothesized that there is an evolutionary association of leaf water transport capacity with photosynthesis and stomatal density in ferns. In the present study, a series of functional traits relating to leaf anatom...
متن کاملAcclimation to humidity modifies the link between leaf size and the density of veins and stomata.
The coordination of veins and stomata during leaf acclimation to sun and shade can be facilitated by differential epidermal cell expansion so large leaves with low vein and stomatal densities grow in shade, effectively balancing liquid- and vapour-phase conductances. As the difference in vapour pressure between leaf and atmosphere (VPD) determines transpiration at any given stomatal density, we...
متن کاملAn Integrated Hydraulic-Hormonal Model of Conifer Stomata Predicts Water Stress Dynamics[OPEN]
The ability of plants to dynamically regulate water loss through stomata under conditions of changing evaporative demand or water availability is paramount for avoiding excessive desiccation, hydraulic failure, and plant death under conditions of water stress. Despite apparently similar functional demands on stomatal evolution, not all lineages employ the same mechanism of controlling water los...
متن کاملAn Integrated Hydraulic-Hormonal Model of Conifer Stomata Predicts Water Stress Dynamics.
The ability of plants to dynamically regulate water loss through stomata under conditions of changing evaporative demand or water availability is paramount for avoiding excessive desiccation, hydraulic failure, and plant death under conditions of water stress. Despite apparently similar functional demands on stomatal evolution, not all lineages employ the same mechanism of controlling water los...
متن کامل