Quantitative imaging of ion transport through single nanopores by high-resolution scanning electrochemical microscopy.
نویسندگان
چکیده
Here we report on the unprecedentedly high resolution imaging of ion transport through single nanopores by scanning electrochemical microscopy (SECM). The quantitative SECM image of single nanopores allows for the determination of their structural properties, including their density, shape, and size, which are essential for understanding the permeability of the entire nanoporous membrane. Nanoscale spatial resolution was achieved by scanning a 17 nm radius pipet tip at a distance as low as 1.3 nm from a highly porous nanocrystalline silicon membrane in order to obtain the peak current response controlled by the nanopore-mediated diffusional transport of tetrabutylammonium ions to the nanopipet-supported liquid-liquid interface. A 280 nm × 500 nm image resolved 13 nanopores, which corresponds to a high density of 93 nanopores/μm(2). A finite element simulation of the SECM image was performed to assess quantitatively the spatial resolution limited by the tip diameter in resolving two adjacent pores and to determine the actual size of a nanopore, which was approximated as an elliptical cylinder with a depth of 30 nm and major and minor axes of 53 and 41 nm, respectively. These structural parameters were consistent with those determined by transmission electron microscopy, thereby confirming the reliability of quantitative SECM imaging at the nanoscale level.
منابع مشابه
Scanning impedance microscopy (SIM): A novel approach for AC transport imaging
Scanning Impedance Microscopy (SIM) is one of the novel scanning probe microscopy (SPM) techniques, which has been developed to taking image from sample surface, providing quantitative information with high lateral resolution on the interface capacitance, and investigating the local capacitance–voltage (C–V) behavior of the interface and AC transport properties. The SIM is an ordinary AFM equip...
متن کاملRapid and precise scanning helium ion microscope milling of solid-state nanopores for biomolecule detection.
We report the formation of solid-state nanopores using a scanning helium ion microscope. The fabrication process offers the advantage of high sample throughput along with fine control over nanopore dimensions, producing single pores with diameters below 4 nm. Electronic noise associated with ion transport through the resultant pores is found to be comparable with levels measured on devices made...
متن کاملScanning impedance microscopy (SIM): A novel approach for AC transport imaging
Scanning Impedance Microscopy (SIM) is one of the novel scanning probe microscopy (SPM) techniques, which has been developed to taking image from sample surface, providing quantitative information with high lateral resolution on the interface capacitance, and investigating the local capacitance–voltage (C–V) behavior of the interface and AC transport properties. The SIM is an ordinary AFM equip...
متن کاملIon Permeability of the Nuclear Pore Complex and Ion-Induced Macromolecular Permeation as Studied by Scanning Electrochemical and Fluorescence Microscopy
Efficient delivery of therapeutic macromolecules and nanomaterials into the nucleus is imperative for gene therapy and nanomedicine. Nucleocytoplasmic molecular transport, however, is tightly regulated by the nuclear pore complex (NPC) with the hydrophobic transport barriers based on phenylalanine and glycine repeats. Herein, we apply scanning electrochemical microscopy (SECM) to quantitatively...
متن کاملNanoscale electrochemistry.
■ CONTENTS Nanoelectrodes 473 Extraordinary Properties of Nanoelectrodes 474 Nanoelectrode Fabrication 474 Nanoskiving 475 Lithographically Patterned Nanowire Electrodeposition 475 SWNT-Templated Nanowires and MCEM 476 Voltammetry and Double Layer Effects on Nanoelectrodes 476 Effect of Electrical Double Layer 476 Nanoparticle Electrochemistry 477 Monolayer Protected Clusters 477 Stochastic Nan...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the American Chemical Society
دوره 134 24 شماره
صفحات -
تاریخ انتشار 2012