Signalling by the FGFR-like tyrosine kinase, Kringelchen, is essential for bud detachment in Hydra vulgaris.
نویسندگان
چکیده
Signalling through fibroblast growth factors (FGFR) is essential for proper morphogenesis in higher evolved triploblastic organisms. By screening for genes induced during morphogenesis in the diploblastic Hydra, we identified a receptor tyrosine kinase (kringelchen) with high similarity to FGFR tyrosine kinases. The gene is dynamically upregulated during budding, the asexual propagation of Hydra. Activation occurs in body regions, in which the intrinsic positional value changes. During tissue displacement in the early bud, kringelchen RNA is transiently present ubiquitously. A few hours later - coincident with the acquisition of organiser properties by the bud tip - a few cells in the apical tip express the gene strongly. About 20 hours after the onset of evagination, expression is switched on in a ring of cells surrounding the bud base, and shortly thereafter vanishes from the apical expression zone. The basal ring persists in the parent during tissue contraction and foot formation in the young polyp, until several hours after bud detachment. Inhibition of bud detachment by head regeneration results in severe distortion, disruption or even complete loss of the well-defined ring-like expression zone. Inhibition of FGFR signalling by SU5402 or, alternatively, inhibition of translation by phosphorothioate antisense oligonucleotides inhibited detachment of buds, indicating that, despite the dynamic expression pattern, the crucial phase for FGFR signalling in Hydra morphogenesis lies in bud detachment. Although Kringelchen groups with the FGFR family, it is not known whether this protein is able to bind FGFs, which have not been isolated from Hydra so far.
منابع مشابه
Bud detachment in hydra requires activation of fibroblast growth factor receptor and a Rho–ROCK–myosin II signaling pathway to ensure formation of a basal constriction
BACKGROUND Hydra propagates asexually by exporting tissue into a bud, which detaches 4 days later as a fully differentiated young polyp. Prerequisite for detachment is activation of fibroblast growth factor receptor (FGFR) signaling. The mechanism which enables constriction and tissue separation within the monolayered ecto- and endodermal epithelia is unknown. RESULTS Histological sections an...
متن کاملFMS-like Tyrosine Kinase-3 Mutation in a Child with Standard-risk ALL and Normal Karyotype
FMS-like tyrosine kinase-3 is a receptor tyrosine kinase expressed by immature hematopoietic cells and is important for the normal development of stem cells and the immune system. Mutations of FMS-like tyrosine kinase-3 have been detected in about 30% of patients with acute myelogenous leukemia and a small number of patients with acute lymphoblastic leukemia. The FMS-like tyrosine kinase-3 muta...
متن کاملHydra, a model system to trace the emergence of boundaries in developing eumetazoans.
In developing embryos, boundary formation between neighbouring groups of cells is essential to establish compartments which later fulfil specialized functions. The ability to form such boundaries has likely developed early in animal evolution - due to functional requirements imposed by the necessity to separate tissues which protect the animal, take up food or ensure propagation. Essential for ...
متن کاملNon-canonical fibroblast growth factor signalling in angiogenesis.
Whereas fibroblast growth factors (FGFs) classically transmit their signals via high-affinity tyrosine kinase receptors (FGFR1-4), recent evidence strongly implicates non-tyrosine kinase receptors (NTKR) or cell-surface FGFR-interacting proteins as important players in FGF signalling. Although NTKR have lower affinity for FGFs in comparison with cognate tyrosine kinase receptors, because of the...
متن کاملExpression of a novel receptor tyrosine kinase gene and a paired-like homeobox gene provides evidence of differences in patterning at the oral and aboral ends of hydra.
Axial patterning of the aboral end of the hydra body column was examined using expression data from two genes. One, shin guard, is a novel receptor protein-tyrosine kinase gene expressed in the ectoderm of the peduncle, the end of the body column adjacent to the basal disk. The other gene, manacle, is a paired-like homeobox gene expressed in differentiating basal disk ectoderm. During regenerat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Development
دوره 131 16 شماره
صفحات -
تاریخ انتشار 2004