3D-Printed Biodegradable Polymeric Vascular Grafts.
نویسندگان
چکیده
Congenital heart defect interventions may benefit from the fabrication of patient-specific vascular grafts because of the wide array of anatomies present in children with cardiovascular defects. 3D printing is used to establish a platform for the production of custom vascular grafts, which are biodegradable, mechanically compatible with vascular tissues, and support neotissue formation and growth.
منابع مشابه
Title of Document: ENGINEERING BIODEGRADABLE VASCULAR SCAFFOLDS FOR CONGENITAL HEART DISEASE
Title of Document: ENGINEERING BIODEGRADABLE VASCULAR SCAFFOLDS FOR CONGENITAL HEART DISEASE Anthony J Melchiorri, Doctor of Philosophy, 2015 Directed by: John P. Fisher, Ph.D., Fischell Family Distinguished Professor Fischell Department of Bioengineering The most common birth defects worldwide are congenital heart defects. To treat these malformations in a child’s cardiovascular system, synthe...
متن کامل3D-printed vascular networks direct therapeutic angiogenesis in ischaemia
Arterial bypass grafts remain the gold standard for the treatment of end-stage ischaemic disease. Yet patients unable to tolerate the cardiovascular stress of arterial surgery or those with unreconstructable disease would benefit from grafts that are able to induce therapeutic angiogenesis. Here, we introduce an approach whereby implantation of 3D-printed grafts containing endothelial-cell-line...
متن کاملTissue engineering of blood vessel
Vascular grafts are in large demand for coronary and peripheral bypass surgeries. Although synthetic grafts have been developed, replacement of vessels with purely synthetic polymeric conduits often leads to the failure of such graft, especially in the grafts less than 6 mm in diameter or in the areas of low blood flow, mainly due to the early formation of thrombosis. Moreover, the commonly use...
متن کاملContrasting Biofunctionalization Strategies for the Enhanced Endothelialization of Biodegradable Vascular Grafts
Surface modification of biodegradable vascular grafts is an important strategy to improve the in situ endothelialization of tissue engineered vascular grafts (TEVGs) and prevent major complications associated with current synthetic grafts. Important strategies for improving endothelialization include increasing endothelial cell mobilization and increased endothelial cell capture through biofunc...
متن کاملMedication eluting devices for the field of OBGYN (MEDOBGYN): 3D printed biodegradable hormone eluting constructs, a proof of concept study
3D printing has the potential to deliver personalized implants and devices for obstetric and gynecologic applications. The aim of this study is to engineer customizable and biodegradable 3D printed implant materials that can elute estrogen and/or progesterone. All 3D constructs were printed using polycaprolactone (PCL) biodegradable polymer laden with estrogen or progesterone and were subjected...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Advanced healthcare materials
دوره 5 3 شماره
صفحات -
تاریخ انتشار 2016