Molecular mechanisms of ion conduction in ClC-type chloride channels: lessons from disease-causing mutations.

نویسنده

  • C Fahlke
چکیده

The muscle Cl- channel, ClC-1, is a member of the ClC family of voltage-gated Cl- channels. Mutations in CLCN1, the gene encoding this channel, cause two forms of inherited human muscle disorders: recessive generalized myotonia congenita (Becker) and dominant myotonia (Thomsen). The functional characterization of these naturally occurring mutations not only allowed a better understanding of the pathophysiology of myotonia, it also provided important insights into the structure and function of the entire ClC channel family. This review describes recent experiments using a combination of cellular electrophysiology, molecular genetics, and recombinant DNA technology to study the molecular basis of ion permeation and selection in ClC-type chloride channels.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CLC channel function and dysfunction in health and disease

CLC channels and transporters are expressed in most tissues and fulfill diverse functions. There are four human CLC channels, ClC-1, ClC-2, ClC-Ka, and ClC-Kb, and five CLC transporters, ClC-3 through -7. Some of the CLC channels additionally associate with accessory subunits. Whereas barttin is mandatory for the functional expression of ClC-K, GlialCam is a facultative subunit of ClC-2 which m...

متن کامل

Physiology and Pathophysiology of CLC-1: Mechanisms of a Chloride Channel Disease, Myotonia

The CLC-1 chloride channel, a member of the CLC-channel/transporter family, plays important roles for the physiological functions of skeletal muscles. The opening of this chloride channel is voltage dependent and is also regulated by protons and chloride ions. Mutations of the gene encoding CLC-1 result in a genetic disease, myotonia congenita, which can be inherited as an autosmal dominant (Th...

متن کامل

Mechanism of anionic conduction across ClC.

ClC chloride channels are voltage-gated transmembrane proteins that have been associated with a wide range of regulatory roles in vertebrates. To accomplish their function, they allow small inorganic anions to efficiently pass through, while blocking the passage of all other particles. Understanding the conduction mechanism of ClC has been the subject of many experimental investigations, but un...

متن کامل

From tonus to tonicity: physiology of CLC chloride channels.

Chloride channels are involved in a multitude of physiologic processes ranging from basal cellular functions such as cell volume regulation and acidification of intracellular vesicles to more specialized mechanisms such as vectorial transepithelial transport and regulation of cellular excitability. This plethora of functions is accomplished by numerous functionally highly diverse chloride chann...

متن کامل

CLCN1 Mutations in Czech Patients with Myotonia Congenita, In Silico Analysis of Novel and Known Mutations in the Human Dimeric Skeletal Muscle Chloride Channel

Myotonia congenita (MC) is a genetic disease caused by mutations in the skeletal muscle chloride channel gene (CLCN1) encoding the skeletal muscle chloride channel (ClC-1). Mutations of CLCN1 result in either autosomal dominant MC (Thomsen disease) or autosomal recessive MC (Becker disease). The ClC-1 protein is a homodimer with a separate ion pore within each monomer. Mutations causing recessi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Kidney international

دوره 57 3  شماره 

صفحات  -

تاریخ انتشار 2000