Tendril-less regulates tendril formation in pea leaves.
نویسندگان
چکیده
Tendrils are contact-sensitive, filamentous organs that permit climbing plants to tether to their taller neighbors. Tendrilled legume species are grown as field crops, where the tendrils contribute to the physical support of the crop prior to harvest. The homeotic tendril-less (tl) mutation in garden pea (Pisum sativum), identified almost a century ago, transforms tendrils into leaflets. In this study, we used a systematic marker screen of fast neutron-generated tl deletion mutants to identify Tl as a Class I homeodomain leucine zipper (HDZIP) transcription factor. We confirmed the tendril-less phenotype as loss of function by targeting induced local lesions in genomes (TILLING) in garden pea and by analysis of the tendril-less phenotype of the t mutant in sweet pea (Lathyrus odoratus). The conversion of tendrils into leaflets in both mutants demonstrates that the pea tendril is a modified leaflet, inhibited from completing laminar development by Tl. We provide evidence to show that lamina inhibition requires Unifoliata/LEAFY-mediated Tl expression in organs emerging in the distal region of the leaf primordium. Phylogenetic analyses show that Tl is an unusual Class I HDZIP protein and that tendrils evolved either once or twice in Papilionoid legumes. We suggest that tendrils arose in the Fabeae clade of Papilionoid legumes through acquisition of the Tl gene.
منابع مشابه
Evolutionary, genetic, environmental and hormonal-induced plasticity in the fate of organs arising from axillary meristems in Passiflora spp.
Tendrils can be found in different plant species. In legumes such as pea, tendrils are modified leaves produced by the vegetative meristem but in the grape vine, a same meristem is used to either form a tendril or an inflorescence. Passiflora species originated in ecosystems in which there is dense vegetation and competition for light. Thus climbing on other plants in order to reach regions wit...
متن کاملSurface Hardness Impairment of Quorum Sensing and Swarming for Pseudomonas aeruginosa
The importance of rhamnolipid to swarming of the bacterium Pseudomonas aeruginosa is well established. It is frequently, but not exclusively, observed that P. aeruginosa swarms in tendril patterns--formation of these tendrils requires rhamnolipid. We were interested to explain the impact of surface changes on P. aeruginosa swarm tendril development. Here we report that P. aeruginosa quorum sens...
متن کاملAnalysis and Experiments for Tendril - Type Robots
New models for the Tendril continuous backbone robot, and other similarly constructed robots, are introduced and expanded upon in this thesis. The ability of the application of geometric models to result in more precise control of the Tendril manipulator is evaluated on a Tendril prototype. We examine key issues underlying the design and operation of ―soft‖ robots featuring continuous body (―co...
متن کاملMorphologies of tungsten nanotendrils grown under helium exposure
Nanotendril "fuzz" will grow under He bombardment under tokamak-relevant conditions on tungsten plasma-facing materials in a magnetic fusion energy device. We have grown tungsten nanotendrils at low (50 eV) and high (12 keV) He bombardment energy, in the range 900-1000 °C, and characterized them using electron microscopy. Low energy tendrils are finer (~22 nm diameter) than high-energy tendrils...
متن کاملTranscriptional Analysis of Tendril and Inflorescence Development in Grapevine (Vitis vinifera L.)
In grapevine (Vitis vinifera L.), the lateral meristem can give rise to either tendrils or inflorescences which are determined organs. To get insights into the processes of tendril and inflorescence development, we characterized the transcriptional variation taking place in both organs. The results of the global transcriptional analyses along tendril and inflorescence development suggested that...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Plant cell
دوره 21 2 شماره
صفحات -
تاریخ انتشار 2009