A dynamical strategy for approximation methods
نویسنده
چکیده
The numerical result provided by an approximation method is affected by a global error, which consists of both a truncation error and a round-off error. Let us consider the converging sequence generated by successively dividing by two the step size used. If computations are performed until, in the convergence zone, the difference between two successive approximations is only due to round-off errors, then the global error on the result obtained is minimal. Furthermore its significant bits which are not affected by round-off errors are in common with the exact result, up to one. To cite this article: F. Jézéquel, C. R. Acad. Sci. Paris, Ser. I 340 (2006). Résumé Une stratégie dynamique pour les méthodes d’approximation. Le résultat numérique fourni par une méthode d’approximation est entaché d’une erreur globale qui comprend à la fois une erreur de troncature et une erreur d’arrondi. Considérons la suite convergente générée en divisant par deux successivement le pas utilisé. Si les calculs sont effectués jusqu’à ce que, dans la zone de convergence, la différence entre deux approximations successives soit uniquement due aux erreurs d’arrondi, alors l’erreur globale sur le résultat obtenu est minimale. De plus, ses bits significatifs non entachés d’erreur d’arrondi sont en commun avec le résultat exact, à un près. Pour citer cet article : F. Jézéquel, C. R. Acad. Sci. Paris, Ser. I 340 (2006). Version française abrégée Une méthode d’approximation fournit un résultat entaché d’une erreur de troncature inhérente à l’algorithme utilisé et d’une erreur d’arrondi due à la précision finie de l’arithmétique de l’ordinateur. Lorsque le pas de discrétisation Email address: [email protected] (Fabienne Jézéquel). Preprint submitted to Elsevier 2 December 2009 d’une telle méthode décrôıt, l’erreur de troncature diminue, mais l’erreur d’arrondi augmente. Il peut alors être difficile de contrôler ces deux erreurs à la fois. Le théorème 0.1 permet, à partir de deux approximations calculées avec les pas h et h 2 , de déterminer les premiers chiffres du résultat exact. Il généralise les résultats théoriques qui avaient été établis pour différentes méthodes de quadrature: tout d’abord pour la méthode des trapèzes et celle de Simpson [4], puis pour les méthodes fermées de Newton-Cotes [1] et la méthode de Gauss-Legendre [6]. Théorème 0.1 Si Ln est une approximation d’ordre p calculée avec le pas h0 2 d’une valeur exacte L, dont le développement jusqu’à l’ordre q de l’erreur de troncature est Ln − L = K (
منابع مشابه
Analyzing Evolution Strategy via Stochastic Approximation Methods
The main objective of this paper is to analyze the evolution strategy by use of stochastic approximation methods Both constant and decreasing step size algorithms are studied Convergence and estimation error bounds for the evolution strategy are developed First the algorithm is converted to a recursively de ned scheme of stochastic approximation type Then the analysis is carried out by using th...
متن کاملA Two Level Approximation Technique for Structural Optimization
This work presents a method for optimum design of structures, where the design variables can he considered as Continuous or discrete. The variables are chosen as sizing variables as well as coordinates of joints. The main idea is to reduce the number of structural analyses and the overal cost of optimization. In each design cycle, first the structural response quantities such as forces, displac...
متن کاملDynamical strategies using Discrete Stochastic Arithmetic for approximation methods
Let us consider the converging sequence generated by successively dividing by two the step size used in an approximation method. With an appropriate stopping criterion, we show that in the last approximation obtained, the significant bits which are not affected by round-off errors are in common with the exact result, up to one. This strategy has been successfully applied to several composite qu...
متن کاملGDOP Classification and Approximation by Implementation of Time Delay Neural Network Method for Low-Cost GPS Receivers
Geometric Dilution of Precision (GDOP) is a coefficient for constellations of Global Positioning System (GPS) satellites. These satellites are organized geometrically. Traditionally, GPS GDOP computation is based on the inversion matrix with complicated measurement equations. A new strategy for calculation of GPS GDOP is construction of time series problem; it employs machine learning and artif...
متن کاملNeuro-fuzzy Sliding Mode Controller Based on a Brushless Doubly Fed Induction Generator
The combination of neural networks and fuzzy controllers is considered as the most efficient approach for different functions approximation, and indicates their ability to control nonlinear dynamical systems. This paper presents a hybrid control strategy called Neuro-Fuzzy Sliding Mode Control (NFSMC) based on the Brushless Doubly fed Induction Generator (BDFIG). This replaces the sliding surfa...
متن کاملFunction Approximation Approach for Robust Adaptive Control of Flexible joint Robots
This paper is concerned with the problem of designing a robust adaptive controller for flexible joint robots (FJR). Under the assumption of weak joint elasticity, FJR is firstly modeled and converted into singular perturbation form. The control law consists of a FAT-based adaptive control strategy and a simple correction term. The first term of the controller is used to stability of the slow dy...
متن کامل