Potato Suberin Induces Differentiation and Secondary Metabolism in the Genus Streptomyces

نویسندگان

  • Sylvain Lerat
  • Martin Forest
  • Annie Lauzier
  • Gilles Grondin
  • Serge Lacelle
  • Carole Beaulieu
چکیده

Bacteria of the genus Streptomyces are soil microorganisms with a saprophytic life cycle. Previous studies have revealed that the phytopathogenic agent S. scabiei undergoes metabolic and morphological modifications in the presence of suberin, a complex plant polymer. This paper investigates morphological changes induced by the presence of potato suberin in five species of the genus Streptomyces, with emphasis on S. scabiei. Streptomyces scabiei, S. acidiscabies, S. avermitilis, S. coelicolor and S. melanosporofaciens were grown both in the presence and absence of suberin. In all species tested, the presence of the plant polymer induced the production of aerial hyphae and enhanced resistance to mechanical lysis. The presence of suberin in liquid minimal medium also induced the synthesis of typical secondary metabolites in S. scabiei and S. acidiscabies (thaxtomin A), S. coelicolor (actinorhodin) and S. melanosporofaciens (geldanamycin). In S. scabiei, the presence of suberin modified the fatty acid composition of the bacterial membrane, which translated into higher membrane fluidity. Moreover, suberin also induced thickening of the bacterial cell wall. The present data indicate that suberin hastens cellular differentiation and triggers the onset of secondary metabolism in the genus Streptomyces.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Physical, Chemical and Proteomic Evidence of Potato Suberin Degradation by the Plant Pathogenic Bacterium Streptomyces scabiei

Potato peels consist of a tissue called phellem, which is formed by suberized cell layers. The degradation of suberin, a lipidic and recalcitrant polymer, is an ecological process attributed to soil fungal populations; however, previous studies have suggested that Streptomyces scabiei, the causal agent of potato common scab, possesses the ability to degrade suberin. In the present study, S. sca...

متن کامل

Suberin Regulates the Production of Cellulolytic Enzymes in Streptomyces scabiei, the Causal Agent of Potato Common Scab

Suberin, a major constituent of the potato periderm, is known to promote the production of thaxtomins, the key virulence factors of the common scab-causing agent Streptomyces scabiei. In the present study, we speculated that suberin affected the production of glycosyl hydrolases, such as cellulases, by S. scabiei, and demonstrated that suberin promoted glycosyl hydrolase activity when added to ...

متن کامل

Stimulatory effect of copper on antibiotic production and morphological differentiation in Streptomyces tanashiensis.

The Gram-positive bacterial genus Streptomyces has two characteristic features; one is its productivity of a wide variety of secondary metabolites such as antibiotics or other biologically active compounds, and the other is its ability to perform cellular-differentiation from substrate hyphae into aerial mycelium and spores1'2). These phenotypic features of Streptomyces are knownto be induced b...

متن کامل

Proteome Analyses of Soil Bacteria Grown in the Presence of Potato Suberin, a Recalcitrant Biopolymer

Suberin is a complex lipidic plant polymer found in various tissues including the potato periderm. The biological degradation of suberin is attributed to fungi. Soil samples from a potato field were used to inoculate a culture medium containing suberin as the carbon source, and a metaproteomic approach was used to identify bacteria that developed in the presence of suberin over a 60-d incubatio...

متن کامل

A microbial hormone, A-factor, as a master switch for morphological differentiation and secondary metabolism in Streptomyces griseus.

The Gram-positive, soil-inhabiting, filamentous bacterial genus Streptomyces employs gamma-butyrolactones as chemical signalling molecules or microbial hormones, together with their specific receptors, to regulate morphological and/or physiological differentiation. The A-factor regulatory cascade in streptomycin-producing Streptomyces griseus commences aerial mycelium formation and production o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 27  شماره 

صفحات  -

تاریخ انتشار 2012