Notch fatigue of ultrahigh molecular weight polyethylene (UHMWPE) used in total joint replacements.
نویسندگان
چکیده
Ultrahigh molecular weight polyethylene (UHMWPE) has remained the primary polymer used in hip, knee and shoulder replacements for over 50 years. Recent case studies have demonstrated that catastrophic fatigue fracture of the polymer can severely limit device lifetime and are often associated with stress concentration (notches) integrated into the design. This study evaluates the influence of notch geometry on the fatigue of three formulations of UHMWPE that are in use today. A linear-elastic fracture mechanics approach is adopted to evaluate crack propagation as a function of notch root radius, heat treatment and Vitamin E additions. Specifically, a modified stress-intensity factor that accounts for notch geometry was utilized to model the crack driving force. The degree of notch plasticity for each material/notch combination was further evaluated using finite element methods. Experimental evaluation of crack speed as a function of stress intensity was conducted under cyclic tensile loading, taking crack length and notch plasticity into consideration. Results demonstrated that crack propagation in UHMWPE emanating from a notch was primarily affected by microstructural influences (cross-linking) rather than differences in notch geometry.
منابع مشابه
Notch Effects Under Physiologically-Relevant Conditions of Conventional and Highly Crosslinked UHMWPEs
Introduction: Ultra high molecular weight polyethylene (UHMWPE) components used in total joint replacements have rims and fillets that act as design stress risers; thus, it is of interest to determine the behavior UHMWPE under multiaxial loading conditions. Currently, there are a number of conventional and crosslinked UHMWPE formulations in clinical use in total hip and total knee replacement c...
متن کاملAn augmented hybrid constitutive model for simulation of unloading and cyclic loading behavior of conventional and highly crosslinked UHMWPE.
Ultra-high molecular weight polyethylene (UHMWPE) is extensively used in total joint replacements. Wear, fatigue, and fracture have limited the longevity of UHMWPE components. For this reason, significant effort has been directed towards understanding the failure and wear mechanisms of UHMWPE, both at a micro-scale and a macro-scale, within the context of joint replacements. We have previously ...
متن کاملInvestigation of Wear Behavior of Biopolymers for Total Knee Replacements Through Invitro Experimentation
The average life span of knee prosthesis used in Total Knee Replacement (TKR) is approximately 10 to 15 years. Literature indicates that the reasons for implant failures include wear, infection, instability, and stiffness. However, the majority of failures are due to wear and tear of the prosthesis. The most common biopolymer used in TKR is Ultra High Molecular Weight Polyethylene (UHMWPE). Pr...
متن کاملFriction and wear behavior of ultrahigh molecular weight polyethylene as a function of crystallinity in the presence of the phospholipid dipalmitoyl phosphatidylcholine.
In this study, the friction and wear behavior of ultrahigh molecular weight polyethylene (UHMWPE) were evaluated as a function of polymer crystallinity in the presence of the phospholipid dipalmitoyl phosphatidylcholine (DPPC) dissolved in ethanol. Samples of UHMWPE were separately heat treated to get high and low crystallinity samples. Degree of crystallinity was evaluated using differential s...
متن کاملMicroscale wear behavior and crosslinking of PEG-like coatings for total hip replacements
The predominant cause of late-state failure of total hip replacements is wear-mediated osteolysis caused by wear particles that originate from the ultrahigh molecular weight polyethylene (UHMWPE) acetabular cup surface. One strategy for reducing wear particle formation from UHMWPE is to modify the surface with a hydrophilic coating to increase lubrication from synovial fluid. This study focuses...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the mechanical behavior of biomedical materials
دوره 60 شماره
صفحات -
تاریخ انتشار 2016