A Krylov-Schur Algorithm for Matrix Products?

نویسنده

  • Daniel Kressner
چکیده

Stewart’s recently introduced Krylov-Schur algorithm is a modification of the implicitly restarted Arnoldi algorithm which employs reordered Schur decompositions to perform restarts and deflations in a numerically reliable manner. This paper describes a variant of the Krylov-Schur algorithm suitable for addressing eigenvalue problems associated with products of large and sparse matrices. It performs restarts and deflations via reordered periodic Schur decompositions and, by taking the product structure into account, it is capable to achieve qualitatively better approximations to the eigenvalues of small magnitude.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A periodic Krylov-Schur algorithm for large matrix products

Stewart’s recently introduced Krylov-Schur algorithm is a modification of the implicitly restarted Arnoldi algorithm which employs reordered Schur decompositions to perform restarts and deflations in a numerically reliable manner. This paper describes a variant of the Krylov-Schur algorithm suitable for addressing eigenvalue problems associated with products of large and sparse matrices. It per...

متن کامل

Theoretical results on the global GMRES method for solving generalized Sylvester matrix‎ ‎equations

‎The global generalized minimum residual (Gl-GMRES)‎ ‎method is examined for solving the generalized Sylvester matrix equation‎ ‎[sumlimits_{i = 1}^q {A_i } XB_i = C.]‎ ‎Some new theoretical results are elaborated for‎ ‎the proposed method by employing the Schur complement‎. ‎These results can be exploited to establish new convergence properties‎ ‎of the Gl-GMRES method for solving genera...

متن کامل

The Quadratic Arnoldi Method for the Solution of the Quadratic Eigenvalue Problem

The Quadratic Arnoldi algorithm is an Arnoldi algorithm for the solution of the quadratic eigenvalue problem, that exploits the structure of the Krylov vectors. This allows us to reduce the memory requirements by about a half. The method is an alternative to the Second Order Arnoldi method (SOAR). In the SOAR method it is not clear how to perform an implicit restart. We discuss various choices ...

متن کامل

A Parallel Implementation of the Block Preconditioned GCR Method

The parallel implementation of GCR is addressed, with particular focus on communication costs associated with orthogonalization processes. This consideration brings up questions concerning the use of Householder reflections with GCR. To precondition the GCR method a block Gauss-Jacobi method is used. Approximate solvers are used to obtain a solution of the diagonal blocks. Experiments on a clus...

متن کامل

A Hamiltonian Krylov-Schur-type method based on the symplectic Lanczos process

We discuss a Krylov-Schur like restarting technique applied within the symplectic Lanczos algorithm for the Hamiltonian eigenvalue problem. This allows to easily implement a purging and locking strategy in order to improve the convergence properties of the symplectic Lanczos algorithm. The Krylov-Schur-like restarting is based on the SR algorithm. Some ingredients of the latter need to be adapt...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004