Dispersive and Diffusive-Dispersive Shock Waves for Nonconvex Conservation Laws

نویسندگان

  • G. A. El
  • M. A. Hoefer
  • Michael Shearer
چکیده

We consider two physically and mathematically distinct regularization mechanisms of scalar hyperbolic conservation laws. When the flux is convex, the combination of di↵usion and dispersion are known to give rise to monotonic and oscillatory traveling waves that approximate shock waves. The zero-di↵usion limits of these traveling waves are dynamically expanding dispersive shock waves (DSWs). A richer set of wave solutions can be found when the flux is non-convex. This review compares the structure of solutions of Riemann problems for a conservation law with non-convex, cubic flux regularized by two di↵erent mechanisms: 1) dispersion in the modified Korteweg–de Vries (mKdV) equation; and 2) a combination of di↵usion and dispersion in the mKdV-Burgers equation. In the first case, the possible dynamics involve two qualitatively di↵erent types of DSWs, rarefaction waves (RWs) and kinks (monotonic fronts). In the second case, in addition to RWs, there are traveling wave solutions approximating both classical (Lax) and non-classical (undercompressive) shock waves. Despite the singular nature of the zero-di↵usion limit and rather di↵ering analytical approaches employed in the descriptions of dispersive and di↵usive-dispersive regularization, the resulting comparison of the two cases reveals a number of striking parallels. In contrast to the case of convex flux, the mKdVB to mKdV mapping is not one-to-one. The mKdV kink solution is identified as an undercompressive DSW. Other prominent features, such as shock-rarefactions, also find their purely dispersive counterparts involving special contact DSWs, which exhibit features analogous to contact discontinuities. This review describes an important link between two major areas of applied mathematics, hyperbolic conservation laws and nonlinear dispersive waves.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Singular limits for a parabolic-elliptic regularization of scalar conservation laws

We consider scalar hyperbolic conservation laws with a nonconvex flux, in one space dimension. Then, weak solutions of the associated initial-value problems can contain undercompressive shock waves. We regularize the hyperbolic equation by a parabolic-elliptic system that produces undercompressive waves in the hyperbolic limit regime. Moreover we show that in another limit regime, called capill...

متن کامل

Existence of Traveling Waves for Diffusive-dispersive Conservation Laws

In this work we show the existence existence and uniqueness of traveling waves for diffusive-dispersive conservation laws with flux function in C1(R), by using phase plane analysis. Also we estimate the domain of attraction of the equilibrium point attractor corresponding to the right-hand state. The equilibrium point corresponding to the left-hand state is a saddle point. According to the phas...

متن کامل

A fully discrete scheme for diffusive-dispersive conservation laws

We introduce a fully discrete (in both space and time) scheme for the numerical approximation of diffusive-dispersive hyperbolic conservation laws in one-space dimension. This scheme extends an approach by LeFloch and Rohde [4]: it satisfies a cell entropy inequality and, as a consequence, the space integral of the entropy is a decreasing functionof time.This is an important stability property,...

متن کامل

Moderate dispersion in scalar conservation laws

We consider the weakly dissipative and weakly dispersive Burgers-Hopf-Korteweg-de-Vries equation with the diffusion coefficient ε and the dispersion rate δ in the range δ/ε → 0. We study the travelling wave connecting u(−∞) = 1 to u(+∞) = 0 and show that it converges strongly to the entropic shock profile as ε, δ → 0. Key-words Travelling waves, moderate dispersion, Korteweg de Vries equation, ...

متن کامل

Dispersive Hydrodynamics: the Mathematics of Dispersive Shock Waves and Applications

Dispersive hydrodynamics is the domain of applied mathematics and physics concerned with fluid motion in which internal friction, e.g., viscosity, is negligible relative to wave dispersion. In conservative media such as superfluids, optical materials, and water waves, nonlinearity has the tendency to engender wavebreaking that is mitigated by dispersion. The mathematical framework for such medi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM Review

دوره 59  شماره 

صفحات  -

تاریخ انتشار 2017