Measurement of Newtonian fluid slip using a torsional ultrasonic oscillator.
نویسندگان
چکیده
The composite torsional ultrasonic oscillator, a versatile experimental system, can be used to investigate slip of a Newtonian fluid at a smooth surface. A rigorous analysis of slip-dependent damping for the oscillator is presented. Initially, the phenomenon of finite surface slip and the slip length are considered for a half space of Newtonian fluid in contact with a smooth, oscillating solid surface. Definitions are reconsidered and clarified in light of inconsistencies in the literature. We point out that, in general oscillating flows, Navier's slip length b is a complex number. An intuitive velocity discontinuity parameter of unrestricted phase is used to describe the effect of slip on measurement of viscous shear damping. The analysis is applied to the composite oscillator, and preliminary experimental work for a 40 kHz oscillator is presented. The nonslip boundary condition has been verified for a hydrophobic surface in water to within approximately 60 nm of |b|=0 nm . Experiments were carried out at shear rate amplitudes between 230 and 6800 s(-1), corresponding to linear displacement amplitudes between 3.2 and 96 nm.
منابع مشابه
Analysis of slip of a Newtonian fluid applied to a torsional ultrasonic oscillator
A rigorous analysis of slip-dependent damping for an ultrasonic torsional composite oscillator is presented. This versatile experimental system has recently been used to measure surface slip of a Newtonian fluid. Initially, the phenomenon of finite surface slip and the slip length is considered for a half-space of Newtonian fluid in contact with a smooth, oscillating solid surface. Definitions ...
متن کاملSlip Effects on Ohmic Dissipative Non-Newtonian Fluid Flow in the Presence of Aligned Magnetic Field
The present paper deals with the effects of Ohmic dissipative Casson fluid flow over a stretching sheet in the presence of aligned magnetic field. The present phenomenon also includes the interaction of thermal radiation and velocity slip. The governing boundary layer equations are transformed into a set of ordinary differential equations using the similarity transformations. The dimensionless ...
متن کاملFinite Integral Transform Based Solution of Second Grade Fluid Flow between Two Parallel Plates
The importance of the slip flow over the no-slip condition is widely accepted in microscopic scaled domains with the direct impact on microfluidic and nanofluidic systems. The popular Navier Stoke’s (N-S) flow model is largely utilized with the slip flow phenomenon. In the present study, the finite integral transform scheme along with the shift of variables is implemented to solve the equation ...
متن کاملA Numerical Analysis for the Effect of Slip Velocity and Stenosis Shape on Non-Newtonian Flow of Blood (TECHNICAL NOTE)
The aim of this paper is to study the effect of slip velocity and shape of stenosis on non-Newtonian flow of blood through a stenosed arterial segment. Blood is modeled as Bingham-Plastic fluid in a uniform circular tube with a radially non-symmetric stenosis. The problem is investigated by a joint effort of analytical and numerical techniques. The influence of stenosis shape parameter, slip ve...
متن کاملSlip Velocity in Flow and Heat Transfer of Non-newtonian Fluids in Microchannels
The steady-state fully-developed laminar flow of non-Newtonian power-law fluids is examined in a circular microchannel with slip boundary condition and under an imposed constant wall heat flux. Effects of slip as well as the hydrodynamic and thermal key parameters on heat transfer and entropy generation are investigated. The results reveal that increasing the Brinkman number and the flow behavi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 76 6 Pt 2 شماره
صفحات -
تاریخ انتشار 2007