Recurrent Slow Feature Analysis for Developing Object Permanence in Robots

نویسندگان

  • Hande Çelikkanat
  • Erol Şahin
  • Sinan Kalkan
چکیده

In this work, we propose a biologically inspired framework for developing object permanence in robots. In particular, we build upon a previous work on a slowness principle-based visual model (Wiskott and Sejnowski, 2002), which was shown to be adept at tracking salient changes in the environment, while seamlessly “understanding” external causes, and self-emerging structures that resemble the human visual system. We propose an extension to this architecture with a prefrontal cortex-inspired recurrent loop that enables a simple short term memory, allowing the previously reactive system to retain information through time. We argue that object permanence in humans develop in a similar manner, that is, on top a previously matured object concept. Furthermore, we show that the resulting system displays the very behaviors which are thought to be cornerstones of object permanence understanding in humans. Specifically, the system is able to retain knowledge of a hidden object’s velocity, as well as identity, through (finite) occluded periods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Developing a New Method in Object Based Classification to Updating Large Scale Maps with Emphasis on Building Feature

According to the cities expansion, updating urban maps for urban planning is important and its effectiveness is depend on the information extraction / change detection accuracy. Information extraction methods are divided into two groups, including Pixel-Based (PB) and Object-Based (OB). OB analysis has overcome the limitations of PB analysis (producing salt-pepper results and features with hole...

متن کامل

Analysis of Multi-Robots Transportation with Multi-objective PSO Algorithm in an Artificial Capital Market

In this paper, to analyze the transport of autonomous robots, an artificial Capital market is used. Capital market is considered as a pier which loading and unloading of cargo is done. Autonomous robots load and unload from the ship to the warehouse wharf or vice versa. All the robots have the ability of transporting the loads, but depending on loads and the location of unloading (or loading) a...

متن کامل

Fisher Discriminant Analysis (FDA), a supervised feature reduction method in seismic object detection

Automatic processes on seismic data using pattern recognition is one of the interesting fields in geophysical data interpretation. One part is the seismic object detection using different supervised classification methods that finally has an output as a probability cube. Object detection process starts with generating a pickset of two classes labeled as object and non-object and then selecting ...

متن کامل

Object Feature Extraction and Tool Using for Robots with Recurrent Neural Network Model

Construction of an efficient perception and action mechanism is the most crucial issue for creation of intelligent robots. Our objective is to apply the robot’s own experience for developing the robot’s perception and action mechanism based on human development. In this talk, I present my work on development of robot’s perception mechanism based on affordance theory and motion generation using ...

متن کامل

Kinematics and Dynamics of two Cooperating Robots in Spatial Moving of an Object

The kinematics and dynamics of two industrial cooperating robots are presented in this paper. The NOC (natural orthogonal complement) method is used to derive the dynamical equations for the motion of two cooperating robots. The joint torques of the two robots are determined based on the optimization techniques in order to obtain unique solution for joint torques. To this end, minimizing the cr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013