Reversion and T Cell Escape Mutations Compensate the Fitness Loss of a CD8+ T Cell Escape Mutant in Their Cognate Transmitted/Founder Virus
نویسندگان
چکیده
Immune escape mutations that revert back to the consensus sequence frequently occur in newly HIV-1-infected individuals and have been thought to render the viruses more fit. However, their impact on viral fitness and their interaction with other immune escape mutations have not been evaluated in the background of their cognate transmitted/founder (T/F) viral genomes. To precisely determine the role of reversion mutations, we introduced reversion mutations alone or together with CD8+ T cell escape mutations in their unmodified cognate T/F viral genome and determined their impact on viral fitness in primary CD4+ T cells. Two reversion mutations, V247I and I64T, were identified in Gag and Tat, respectively, but neither had measurable effect on the fitness of their cognate T/F virus. The V247I and G248A mutations that were detected before and concurrently with the potent T cell escape mutation T242N, respectively, were selected by early T cell responses. The V247I or the G248A mutation alone partially restored the fitness loss caused by the T242N mutation. Together they could fully restore the fitness of the T242N mutant to the T/F level. These results demonstrate that the fitness loss caused by a T cell escape mutation could be compensated by preexisting or concurrent reversion and other T cell escape mutations. Our findings indicate that the overall viral fitness is modulated by the complex interplay among T cell escape, compensatory and reversion mutations to maintain the balance between immune escape and viral replication capacity.
منابع مشابه
In vivo fitness costs of different Gag CD8 T-cell escape mutant simian-human immunodeficiency viruses for macaques.
The kinetics of immune escape and reversion depend upon the efficiency of CD8 cytotoxic T lymphocytes (CTL) and the fitness cost of escape mutations. Escape kinetics of three simian immunodeficiency virus Gag CTL epitopes in pigtail macaques were variable; those of KP9 and AF9 were faster than those of KW9. Kinetics of reversion of escape mutant virus to wild type upon passage to naïve major hi...
متن کاملVaccine-induced T cells control reversion of AIDS virus immune escape mutants.
Many current-generation human immunodeficiency virus (HIV) vaccines induce specific T cells to control acute viremia, but their utility following infection with escape mutant virus is unclear. We studied reversion to wild type of an escape mutant simian-HIV in major histocompatibility complex-matched vaccinated pigtail macaques. High levels of vaccine-induced CD8+ T cells strongly correlated wi...
متن کاملRapid viral escape at an immunodominant simian-human immunodeficiency virus cytotoxic T-lymphocyte epitope exacts a dramatic fitness cost.
Escape from specific T-cell responses contributes to the progression of human immunodeficiency virus type 1 (HIV-1) infection. T-cell escape viral variants are retained following HIV-1 transmission between major histocompatibility complex (MHC)-matched individuals. However, reversion to wild type can occur following transmission to MHC-mismatched hosts in the absence of cytotoxic T-lymphocyte (...
متن کاملComplexity of the Inoculum Determines the Rate of Reversion of SIV Gag CD8 T Cell Mutant Virus and Outcome of Infection
Escape mutant (EM) virus that evades CD8+ T cell recognition is frequently observed following infection with HIV-1 or SIV. This EM virus is often less replicatively "fit" compared to wild-type (WT) virus, as demonstrated by reversion to WT upon transmission of HIV to a naïve host and the association of EM virus with lower viral load in vivo in HIV-1 infection. The rate and timing of reversion i...
متن کاملVaccination and Timing Influence SIV Immune Escape Viral Dynamics In Vivo
CD8+ cytotoxic T lymphocytes (CTL) can be effective at controlling HIV-1 in humans and SIV in macaques, but their utility is partly offset by mutational escape. The kinetics of CTL escape and reversion of escape mutant viruses upon transmission to MHC-mismatched hosts can help us understand CTL-mediated viral control and the fitness cost extracted by immune escape mutation. Traditional methods ...
متن کامل