Strong valid inequalities for orthogonal disjunctions and bilinear covering sets

نویسندگان

  • Mohit Tawarmalani
  • Jean-Philippe P. Richard
  • Kwanghun Chung
چکیده

In this paper, we develop a convexification tool that enables the construction of convex hulls for orthogonal disjunctive sets using convex extensions and disjunctive programming techniques. A distinguishing feature of our technique is that, unlike most applications of disjunctive programming, it does not require the introduction of new variables in the relaxation. We develop and apply a toolbox of results that help in checking the technical assumptions under which the convexification tool can be employed. We demonstrate its applicability in integer programming by deriving the intersection cut for mixed-integer polyhedral sets and the convex hull of certain mixed/pure-integer bilinear sets. We then develop a key result that extends the applicability of the convexification tool to relaxing nonconvex inequalities, which are not naturally disjunctive, by providing sufficient conditions for establishing the convex extension property over the non-negative orthant. We illustrate the utility of this result by deriving the convex hull of a continuous bilinear covering set over the non-negative orthant.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lifted Inequalities for 0 − 1 Mixed - Integer Bilinear Covering Sets ∗

4 In this paper, we study 0−1 mixed-integer bilinear covering sets. We derive several families of facet5 defining inequalities via sequence-independent lifting techniques. We then show that these sets have 6 polyhedral structures that are similar to those of certain fixed-charge single-node flow sets. As a result, we 7 obtain new facet-defining inequalities for these sets that generalize well-k...

متن کامل

STRONG VALID INEQUALITIES FOR MIXED-INTEGER NONLINEAR PROGRAMS VIA DISJUNCTIVE PROGRAMMING AND LIFTING By KWANGHUN CHUNG A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

of Dissertation Presented to the Graduate School of the University of Florida in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy STRONG VALID INEQUALITIES FOR MIXED-INTEGER NONLINEAR PROGRAMS VIA DISJUNCTIVE PROGRAMMING AND LIFTING By Kwanghun Chung August 2010 Chair: Jean-Philippe. P. Richard Major: Industrial and Systems Engineering Mixed-Integer Nonlinear Progr...

متن کامل

Lattice-free sets, branching disjunctions, and mixed-integer programming

In this paper we study the relationship between valid inequalities for mixed-integer sets, lattice-free sets associated with these inequalities and structured disjunctive cuts, especially the t-branch split cuts introduced by Li and Richard (2008). By analyzing n-dimensional lattice-free sets, we prove that every facet-defining inequality of the convex hull of a mixed-integer polyhedral set wit...

متن کامل

Mixed-Integer Linear Representability, Disjunctions, and Variable Elimination

Jeroslow and Lowe gave an exact geometric characterization of subsets of R that are projections of mixed-integer linear sets, a.k.a MILP-representable sets. We give an alternate algebraic characterization by showing that a set is MILP-representable if and only if the set can be described as the intersection of finitely many affine Chvátal inequalities. These inequalities are a modification of a...

متن کامل

Two-Term Disjunctions on the Second-Order Cone

Balas introduced disjunctive cuts in the 1970s for mixed-integer linear programs. Several recent papers have attempted to extend this work to mixedinteger conic programs. In this paper we study the structure of the convex hull of a two-term disjunction applied to the second-order cone, and develop a methodology to derive closed-form expressions for convex inequalities describing the resulting c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Program.

دوره 124  شماره 

صفحات  -

تاریخ انتشار 2010