A GPU-accelerated Direct-sum Boundary Integral Poisson-Boltzmann Solver

نویسندگان

  • Weihua Geng
  • Ferosh Jacob
چکیده

In this paper, we present a GPU-accelerated direct-sum boundary integral method to solve the linear Poisson-Boltzmann (PB) equation. In our method, a well-posed boundary integral formulation is used to ensure the fast convergence of Krylov subspace based linear algebraic solver such as the GMRES. The molecular surfaces are discretized with flat triangles and centroid collocation. To speed up our method, we take advantage of the parallel nature of the boundary integral formulation and parallelize the schemes within CUDA shared memory architecture on GPU. The schemes use only 11N + 6Nc size-of-double device memory for a biomolecule with N triangular surface elements and Nc partial charges. Numerical tests of these schemes show well-maintained accuracy and fast convergence. The GPU implementation using one GPU card (Nvidia Tesla M2070) achieves 120-150X speed-up to the implementation using one CPU (Intel L5640 2.27GHz). With our approach, solving PB equations on well-discretized molecular surfaces with up to 300,000 boundary elements will take less than about 10 minutes, hence our approach is particularly suitable for fast electrostatics computations on small to medium biomolecules.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A treecode-accelerated boundary integral Poisson-Boltzmann solver for electrostatics of solvated biomolecules

We present a treecode-accelerated boundary integral (TABI) solver for electrostatics of solvated biomolecules described by the linear Poisson-Boltzmann equation. The method employs a wellconditioned boundary integral formulation for the electrostatic potential and its normal derivative on the molecular surface. The surface is triangulated and the integral equations are discretized by centroid c...

متن کامل

A boundary integral Poisson-Boltzmann solvers package for solvated bimolecular simulations

Abstract: Numerically solving the Poisson-Boltzmann equation is a challenging task due to the existence of the dielectric interface, singular partial charges representing the biomolecule, discontinuity of the electrostatic field, infinite simulation domains, etc. Boundary integral formulation of the Poisson-Boltzmann equation can circumvent these numerical challenges and meanwhile conveniently ...

متن کامل

An Adaptive Fast Multipole Boundary Element Method for Poisson−Boltzmann Electrostatics

The numerical solution of the Poisson-Boltzmann (PB) equation is a useful but a computationally demanding tool for studying electrostatic solvation effects in chemical and biomolecular systems. Recently, we have described a boundary integral equation-based PB solver accelerated by a new version of the fast multipole method (FMM). The overall algorithm shows an order N complexity in both the com...

متن کامل

Parallel Higher-order Boundary Integral Electrostatics Computation on Molecular Surfaces with Curved Triangulation

In this paper,wepresent a parallel higher-order boundary integralmethod to solve the linear Poisson–Boltzmann (PB) equation. In our method, a well-posed boundary integral formulation is used to ensure the fast convergence of Krylov subspace linear solver such as GMRES. The molecular surfaces are first discretized with flat triangles and then converted to curved triangleswith the assistance of n...

متن کامل

Mathematical and Numerical Aspects of the Adaptive Fast Multipole Poisson-Boltzmann Solver

This paper summarizes the mathematical and numerical theories and computational elements of the adaptive fast multipole Poisson-Boltzmann (AFMPB) solver. We introduce and discuss the following components in order: the Poisson-Boltzmann model, boundary integral equation reformulation, surface mesh generation, the nodepatch discretization approach, Krylov iterative methods, the new version of fas...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computer Physics Communications

دوره 184  شماره 

صفحات  -

تاریخ انتشار 2013