The Listeria monocytogenes σB Regulon and Its Virulence-Associated Functions Are Inhibited by a Small Molecule
نویسندگان
چکیده
UNLABELLED The stress-responsive alternative sigma factor σ(B) is conserved across diverse Gram-positive bacterial genera. In Listeria monocytogenes, σ(B) regulates transcription of >150 genes, including genes contributing to virulence and to bacterial survival under host-associated stress conditions, such as those encountered in the human gastrointestinal lumen. An inhibitor of L. monocytogenes σ(B) activity was identified by screening ~57,000 natural and synthesized small molecules using a high-throughput cell-based assay. The compound fluoro-phenyl-styrene-sulfonamide (FPSS) (IC(50) = 3.5 µM) downregulated the majority of genes previously identified as members of the σ(B) regulon in L. monocytogenes 10403S, thus generating a transcriptional profile comparable to that of a 10403S ΔsigB strain. Specifically, of the 208 genes downregulated by FPSS, 75% had been identified previously as positively regulated by σ(B). Downregulated genes included key virulence and stress response genes, such as inlA, inlB, bsh, hfq, opuC, and bilE. From a functional perspective, FPSS also inhibited L. monocytogenes invasion of human intestinal epithelial cells and bile salt hydrolase activity. The ability of FPSS to inhibit σ(B) activity in both L. monocytogenes and Bacillus subtilis indicates its utility as a specific inhibitor of σ(B) across multiple Gram-positive genera. IMPORTANCE The σ(B) transcription factor regulates expression of genes responsible for bacterial survival under changing environmental conditions and for virulence; therefore, this alternative sigma factor is important for transmission of L. monocytogenes and other Gram-positive bacteria. Regulation of σ(B) activity is complex and tightly controlled, reflecting the key role of this factor in bacterial metabolism. We present multiple lines of evidence indicating that fluoro-phenyl-styrene-sulfonamide (FPSS) specifically inhibits activity of σ(B) across Gram-positive bacterial genera, i.e., in both Listeria monocytogenes and Bacillus subtilis. Therefore, FPSS is an important new tool that will enable novel approaches for exploring complex regulatory networks in L. monocytogenes and other Gram-positive pathogens and for investigating small-molecule applications for controlling pathogen transmission.
منابع مشابه
Home Alone: Elimination of All but One Alternative Sigma Factor in Listeria monocytogenes Allows Prediction of New Roles for σB
Among Listeria monocytogenes' four alternative σ factors, σB controls the largest regulon. As σB-dependent transcription of some genes may be masked by overlaps among regulons, and as some σB-dependent genes are expressed only under very specific conditions, we hypothesized that the σB regulon is not yet fully defined. To further extend our understanding of the σB regulon, we used RNA-seq to id...
متن کاملListeria monocytogenes Differential Transcriptome Analysis Reveals Temperature-Dependent Agr Regulation and Suggests Overlaps with Other Regulons
Listeria monocytogenes is a ubiquitous, opportunistic pathogenic organism. Environmental adaptation requires constant regulation of gene expression. Among transcriptional regulators, AgrA is part of an auto-induction system. Temperature is an environmental cue critical for in vivo adaptation. In order to investigate how temperature may affect AgrA-dependent transcription, we compared the transc...
متن کاملThe Role of Stress and Stress Adaptations in Determining the Fate of the Bacterial Pathogen Listeria monocytogenes in the Food Chain
The foodborne pathogen Listeria monocytogenes is a highly adaptable organism that can persist in a wide range of environmental and food-related niches. The consumption of contaminated ready-to-eat foods can cause infections, termed listeriosis, in vulnerable humans, particularly those with weakened immune systems. Although these infections are comparatively rare they are associated with high mo...
متن کاملMicroarray-based characterization of the Listeria monocytogenes cold regulon in log- and stationary-phase cells.
Whole-genome microarray experiments were performed to define the Listeria monocytogenes cold growth regulon and to identify genes differentially expressed during growth at 4 and 37 degrees C. Microarray analysis using a stringent cutoff (adjusted P < 0.001; >/=2.0-fold change) revealed 105 and 170 genes that showed higher transcript levels in logarithmic- and stationary-phase cells, respectivel...
متن کاملPrfA regulation offsets the cost of L isteria virulence outside the host
Virulence traits are essential for pathogen fitness, but whether they affect microbial performance in the environment, where they are not needed, remains experimentally unconfirmed. We investigated this question with the facultative pathogen Listeria monocytogenes and its PrfA virulence regulon. PrfA-regulated genes are activated intracellularly (PrfA 'ON') but shut down outside the host (PrfA ...
متن کامل