Support vector machines, Decision Trees and Neural Networks for auditor selection
نویسندگان
چکیده
The selection of a proper auditor is driven by several factors. Here, we use three data mining classification techniques to predict the auditor choice. The methods used are Decision Trees, Neural Networks and Support Vector Machines. The developed models are compared in term of their performances. The wrapper feature selection technique is used for the Decision Tree model. Two models reveal that the level of debt is a factor that influences the auditor choice decision. This study has implications for auditors, investors, company decision makers and researchers.
منابع مشابه
A Comparative Approximate Economic Behavior Analysis Of Support Vector Machines And Neural Networks Models
متن کامل
Application of Artificial Neural Networks and Support Vector Machines for carbonate pores size estimation from 3D seismic data
This paper proposes a method for the prediction of pore size values in hydrocarbon reservoirs using 3D seismic data. To this end, an actual carbonate oil field in the south-western part ofIranwas selected. Taking real geological conditions into account, different models of reservoir were constructed for a range of viable pore size values. Seismic surveying was performed next on these models. F...
متن کاملApplication of Machine Learning Approaches in Rainfall-Runoff Modeling (Case Study: Zayandeh_Rood Basin in Iran)
Run off resulted from rainfall is the main way of receiving water in most parts of the World. Therefore, prediction of runoff volume resulted from rainfall is getting more and more important in control, harvesting and management of surface water. In this research a number of machine learning and data mining methods including support vector machines, regression trees (CART algorithm), model tree...
متن کاملSupport vector machines for spam categorization
We study the use of support vector machines (SVM's) in classifying e-mail as spam or nonspam by comparing it to three other classification algorithms: Ripper, Rocchio, and boosting decision trees. These four algorithms were tested on two different data sets: one data set where the number of features were constrained to the 1000 best features and another data set where the dimensionality was ove...
متن کاملبررسی کارایی مدلهای هوشمند در برآورد رسوبات معلق رودخانهای (مطالعه موردی: حوزه آبخیز باباامان، خراسان شمالی)
Accurate estimation of the sediment volume carried by the rivers is important in water related projects and recognition and suggestion proper methods for estimating suspended sediment goals which should be conducted by related researches. Among the methods that have been recently used to model suspended sediment, machine learning based methods such as decision trees, support vector machine, and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Comput. Meth. in Science and Engineering
دوره 8 شماره
صفحات -
تاریخ انتشار 2008