From Integrable Lattices to Non-qrt Mappings
نویسندگان
چکیده
Second-order mappings obtained as reductions of integrable lattice equations are generally expected to have integrals that are ratios of biquadratic polynomials, i.e., to be of QRT-type. In this paper we find reductions of integrable lattice equations that are not of this type. The mappings we consider are exact reductions of integrable lattice equations proposed by Adler, Bobenko and Suris. Surprisingly, we found that these mappings possess invariants that are of the type originally studied by Hirota, Kimura and Yahagi. Moreover, we show that two of the mappings obtained are linearisable and we present their linearisation.
منابع مشابه
Integrable Non-qrt Mappings of the Plane
We construct 9-parameter and 13-parameter dynamical systems of the plane which map bi-quadratic curves to other bi-quadratic curves and return to the original curve after two iterations. These generalize the QRT maps which map each such curve to itself. The new families of maps include those that were found as reductions of integrable lattices by [11].
متن کاملDiscrete mappings with an explicit discrete Lyapunov function related to integrable mappings
We propose discrete mappings of second order that have a discrete analogue of Lyapunov function. The mappings are extensions of the integrable Quispel-RobertsThompson (QRT) mapping, and a discrete Lyapunov function of the mappings is identical to an explicit conserved quantity of the QRT mapping. Moreover we can obtain a differential and an ultradiscrete limit of the mappings preserving the exi...
متن کاملAn Ultradiscrete Qrt Mapping from Tropical Elliptic Curves
Recently the area of tropical geometry has introduced the concept of the tropical elliptic group law associated with a tropical elliptic curve. This gives rise to a notion of the tropical QRT mapping. We compute the explicit tropically birational expressions that define the tropical QRTmapping for some arbitrary set of parameters. We consider this a new integrable ultradiscrete system. This als...
متن کاملFixed point theorem for mappings satisfying contractive condition of integral type on intuitionistic fuzzy metric space
In this paper, we shall establish some fixed point theorems for mappings with the contractive condition of integrable type on complete intuitionistic fuzzy metric spaces $(X, M,N,*,lozenge)$. We also use Lebesgue-integrable mapping to obtain new results. Akram, Zafar, and Siddiqui introduced the notion of $A$-contraction mapping on metric space. In this paper by using the main idea of the work...
متن کاملIntegrable Quantum Mappings and Quantization Aspects of Integrable Discrete-time Systems
We study a quantum Yang-Baxter structure associated with non-ultralocal lattice models. We discuss the canonical structure of a class of integrable quantum mappings, i.e. canonical transformations preserving the basic commutation relations. As a particular class of solutions we present two examples of quantum mappings associated with the lattice analogues of the KdV and MKdV equations, together...
متن کامل