A Wheels-and-Whirls Theorem for 3-Connected 2-Polymatroids

نویسندگان

  • James G. Oxley
  • Charles Semple
  • Geoff Whittle
چکیده

Tutte’s Wheels-and-Whirls Theorem is a basic inductive tool for dealing with 3-connected matroids. This paper proves a generalization of that theorem for the class of 2-polymatroids. Such structures include matroids, and they model both sets of points and lines in a projective space and sets of edges in a graph. The main result proves that, in a 3-connected 2-polymatroid that is not a whirl or the cycle matroid of a wheel, one can obtain another 3-connected 2-polymatroid by deleting or contracting some element, or by performing a new operation that generalizes series contraction in a graph. Moreover, we show that, unless one uses some reduction operation in addition to deletion and contraction, the set of minimal 2-polymatroids that are not representable over a fixed field F is infinite, irrespective of whether F is finite or infinite.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Matroids and Graphs with Few Non-Essential Elements

An essential element of a 3–connected matroid M is one for which neither the deletion nor the contraction is 3–connected. Tutte’s Wheels and Whirls Theorem proves that the only 3–connected matroids in which every element is essential are the wheels and whirls. In an earlier paper, the authors showed that a 3–connected matroid with at least one non-essential element has at least two such element...

متن کامل

On the Structure of 3-connected Matroids and Graphs

An element e of a 3-connected matroid M is essential if neither the deletion M\e nor the contraction M/e is 3-connected. Tutte’s Wheels and Whirls Theorem proves that the only 3-connected matroids in which every element is essential are the wheels and whirls. In this paper, we consider those 3-connected matroids that have some non-essential elements, showing that every such matroid M must have ...

متن کامل

An upgraded Wheels-and-Whirls Theorem for 3-connected matroids

Let M be a 3-connected matroid that is not a wheel or a whirl. In this paper, we prove that M has an element e such that M\e or M/e is 3-connected and has no 3-separation that is not equivalent to one induced by M .

متن کامل

The structure of a 3-connected matroid with a 3-separating set of essential elements

An element e of a 3–connected matroid M is essential if neither the deletion nor the contraction of e from M is 3–connected. Tutte’s 1966 Wheels and Whirls Theorem proves that the only 3–connected matroids in which every element is essential are the wheels and whirls. It was proved by Oxley and Wu that if a 3–connected matroid M has a non-essential element, then it has at least two such element...

متن کامل

A chain theorem for matroids

Tutte’s Wheels-and-Whirls Theorem proves that if M is a 3-connected matroid other than a wheel or a whirl, then M has a 3-connected minor N such that |E(M)| − |E(N)| = 1. Geelen and Whittle extended this theorem by showing that when M is sequentially 4-connected, the minor N can also be guaranteed to be sequentially 4connected, that is, for every 3-separation (X, Y ) of N , the set E(N) can be ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Discrete Math.

دوره 30  شماره 

صفحات  -

تاریخ انتشار 2016