Ni-doped TiO2 nanotubes for wide-range hydrogen sensing
نویسندگان
چکیده
Doping of titania nanotubes is one of the efficient way to obtain improved physical and chemical properties. Through electrochemical anodization and annealing treatment, Ni-doped TiO2 nanotube arrays were fabricated and their hydrogen sensing performance was investigated. The nanotube sensor demonstrated a good sensitivity for wide-range detection of both dilute and high-concentration hydrogen atmospheres ranging from 50 ppm to 2% H2. A temperature-dependent sensing from 25°C to 200°C was also found. Based on the experimental measurements and first-principles calculations, the electronic structure and hydrogen sensing properties of the Ni-doped TiO2 with an anatase structure were also investigated. It reveals that Ni substitution of the Ti sites could induce significant inversion of the conductivity type and effective reduction of the bandgap of anatase oxide. The calculations also reveal that the resistance change for Ni-doped anatase TiO2 with/without hydrogen absorption was closely related to the bandgap especially the Ni-induced impurity level.
منابع مشابه
Hydrogen Sensing with Ni-Doped TiO2 Nanotubes
Doping with other elements is one of the efficient ways to modify the physical and chemical properties of TiO2 nanomaterials. In the present work, Ni-doped TiO2 nanotubes were fabricated through anodic oxidation of NiTi alloy and further annealing treatment. The hydrogen sensing properties of the nanotube sensor were investigated. It was found that the Ni-doped TiO2 nanotubes were sensitive to ...
متن کاملp-Type hydrogen sensing with Al- and V-doped TiO2 nanostructures
Doping with other elements is one of the efficient ways to modify the physical and chemical properties of TiO2 nanomaterials. In the present work, anatase TiO2 nanofilms doped with Al and V elements were fabricated through anodic oxidation of Ti6Al4V alloy and further annealing treatment. Hydrogen sensing behavior of the crystallized Ti-Al-V-O nanofilms at various working temperatures was inves...
متن کاملDevelopment of Visible-light-active Photocatalyst for Hydrogen Production and Environmental Application
Semiconductor photocatalysis has been intensively studied in recent decades for a wide variety of application such as hydrogen production from water splitting and water and air treatment. The majority of photocatalysts are, however, wide band-gap semiconductors which are active only under UV irradiation. In order to effectively utilize visible solar radiation, this thesis investigates various t...
متن کاملTiO2 Nanotubes: Recent Advances in Synthesis and Gas Sensing Properties
Synthesis--particularly by electrochemical anodization-, growth mechanism and chemical sensing properties of pure, doped and mixed titania tubular arrays are reviewed. The first part deals on how anodization parameters affect the size, shape and morphology of titania nanotubes. In the second part fabrication of sensing devices based on titania nanotubes is presented, together with their most no...
متن کاملMetal oxide nanoarchitectures for environmental sensing.
Metal oxide materials are widely used for gas sensing. Capable of operating at elevated temperatures and in harsh environments, they are mechanically robust and relatively inexpensive and offer exquisite sensing capabilities, the performance of which is dependent upon the nanoscale morphology. In this paper we first review different routes for the fabrication of metal oxide nanoarchitectures us...
متن کامل