Center and Moment Conditions for Rational Abel Equation

نویسنده

  • M. BLINOV
چکیده

We consider the Abel Equation dy dz = p(z)y2 + q(z)y3 as an equation on the complex plane with p, q – rational functions. The center problem for this equation (which is closely related to the classical center problem for polynomial vector fields on the plane) is to find conditions on p and q under which all the solutions y(z) are univalued functions along the circle |z| = 1. In [3] we have shown that this problem is closely related to Moment Problem, namely conditions on p, q for vanishing of all the moments ∫ |z|=1 P iQjdP with P = ∫ p, Q = ∫ q. We slightly generalize an approach and consider an arbitrary curve γ ∈ C in place of the unit circle |z| = 1. The aim of this paper is to give a simple and constructive description of rational functions P and Q satisfying Moment Condition along γ, and to show that Moment Condition implies Center Condition for P and Q – Laurent polynomials.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some new families of definite polynomials and the composition conjectures

The planar polynomial vector fields with a center at the origin can be written as an scalar differential equation, for example Abel equation. If the coefficients of an Abel equation satisfy the composition condition, then the Abel equation has a center at the origin. Also the composition condition is sufficient for vanishing the first order moments of the coefficients. The composition conjectur...

متن کامل

The Center Problem for the Abel Equation, Compositions of Functions, and Moment Conditions

An Abel differential equation y′ = p(x)y + q(x)y is said to have a center at a pair of complex numbers (a, b) if y(a) = y(b) for every solution y(x) with the initial value y(a) small enough. This notion is closely related to the classical center-focus problem for plane vector fields. Recently, conditions for the Abel equation to have a center have been related to the composition factorization o...

متن کامل

Center and Composition Conditions for Abel Differential Equation, and Rational Curves

We consider the Abel Equation ρ′ = p(θ)ρ2 + q(θ)ρ3 (*) with p(θ), q(θ) polynomials in sin θ, cos θ. The center problem for this equation (which is closely related to the classical center problem for polynomial vector fields on the plane) is to find conditions on p and q under which all the solutions ρ(θ) of this equation are periodic, i.e. ρ(0) = ρ(2π) for all initial values ρ(0). We consider t...

متن کامل

TANGENTIAL VERSION OF HILBERT 16th PROBLEM FOR THE ABEL EQUATION

Two classical problems on plane polynomial vector fields, Hilbert’s 16th problem about the maximal number of limit cycles in such a system and Poincaré’s center-focus problem about conditions for all trajectories around a critical point to be closed, can be naturally reformulated for the Abel differential equation y′ = p(x)y + q(x)y. Recently, the center conditions for the Abel equation have be...

متن کامل

A Method to Approximate Solution of the First Kind Abel Integral Equation Using Navot's Quadrature and Simpson's Rule

In this paper, we present a method for solving the rst kind Abel integral equation. In thismethod, the rst kind Abel integral equation is transformed to the second kind Volterraintegral equation with a continuous kernel and a smooth deriving term expressed by weaklysingular integrals. By using Sidi's sinm - transformation and modied Navot-Simpson'sintegration rule, an algorithm for solving this...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009