A Pseudo-daugavet Property for Narrow Projections in Lorentz Spaces

نویسنده

  • MIKHAIL M. POPOV
چکیده

Let X be a rearrangement-invariant space. An operator T : X → X is called narrow if for each measurable setA and each ε > 0 there exists x ∈ X with x = χA, ∫ xdμ = 0 and ‖Tx‖ < ε. In particular all compact operators are narrow. We prove that if X is a Lorentz function space Lw,p on [0,1] with p > 2, then there exists a constant kX > 1 so that for every narrow projection P on Lw,p ‖Id− P‖ ≥ kX . This generalizes earlier results on Lp and partially answers a question of E. M. Semenov. Moreover we prove that every rearrangement-invariant function space X with an absolutely continuous norm contains a complemented subspace isomorphic to X which is the range of a narrow projection and a non-narrow projection, which gives a negative answer to a question of A.Plichko and M.Popov.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

THE DAUGAVET PROPERTY OF C-ALGEBRAS AND NON-COMMUTATIVE Lp-SPACES

where IX is the identity map on X . The study of the Daugavet property was inaugurated by I. Daugavet [4] in 1961; he proved that every compact operator on C([0, 1]) satisfies (1.1). Consequently, C([0, 1]) has the DP. Investigation of the Daugavet property continued in the seventies and eighties. In particular, J. Holub proved in [7] and [8] (see also [11]) that for any Hausdorff compact topol...

متن کامل

From the Lorentz Transformation Group in Pseudo-Euclidean Spaces to Bi-gyrogroups

‎The Lorentz transformation of order $(m=1,n)$‎, ‎$ninNb$‎, ‎is the well-known ‎Lorentz transformation of special relativity theory‎. ‎It is a transformation of time-space coordinates of the ‎pseudo-Euclidean space $Rb^{m=1,n}$ of one time dimension and ‎$n$ space dimensions ($n=3$ in physical applications)‎. ‎A Lorentz transformation without rotations is called a {it boost}‎. ‎Commonly‎, ‎the ...

متن کامل

The Daugavet Property of the Space of Lipschitz Functions

where Id is the identity operator on C[0, 1]. This equation is now called Daugavet equation. The Banach space X is said to have the Daugavet property when all compact operators on X satisfy the Daugavet equation. More information about the Daugavet spaces can be found in [Werner, 2001]. In the same paper was also posed the question, whether the Banach space of Lipschitz functions on unit square...

متن کامل

Bi-Gyrogroup: The Group-Like Structure Induced by Bi-Decomposition of Groups

‎The decomposition $Gamma=BH$ of a group $Gamma$ into a subset B ‎and a subgroup $H$ of $Gamma$ induces‎, ‎under general conditions‎, ‎a ‎group-like structure for B‎, ‎known as a gyrogroup‎. ‎The famous‎ concrete realization of a gyrogroup‎, ‎which motivated the emergence ‎of gyrogroups into the mainstream‎, ‎is the space of all ‎relativistically admissible velocities along with a binary ‎mbox{...

متن کامل

The Daugavet equation for operators on function spaces

We prove the norm identity ‖Id + T ‖ = 1 + ‖T ‖, which is known as the Daugavet equation, for weakly compact operators T on natural function spaces such as function algebras and L-predual spaces, provided a non-discreteness assumption is met. We also consider c0-factorable operators and operators on CΛ-spaces.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001