Computational Aspects of Polynomial Interpolation in Several Variables

نویسنده

  • CARL DE BOOR
چکیده

The pair (6, P) of a point set 8 C R¿ and a polynomial space P on Rd is correct if the restriction map P —» E8 : p t-> P|Q is invertible, i.e., if there is, for any / defined on 0 , a unique p G P which matches /on 9. We discuss here a particular assignment 6 >-+ Fie , introduced by us previously, for which (8, lie) is always correct, and provide an algorithm for the construction of a basis for ne , which is related to Gauss elimination applied to the Vandermonde matrix (öa)öee a£Zd for 8. We also discuss some attractive properties of the above assignment and algorithmic details, and present some bivariate examples. We say that the pair (6, P) of a (finite) point set OcK1' and a (polynomial) space P of functions on Rd is correct if the restriction map

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A numerical study of the Xu polynomial 2 interpolation formula in two variables 3

8 In his paper " Lagrange interpolation on Chebyshev points of two variables " (J. 9 220–238), Y. Xu proposed a set of Chebyshev like points for polynomial interpolation in the square 10 [−1, 1] 2 , and derived a compact form of the corresponding Lagrange interpolation formula. We inves-11 tigate computational aspects of the Xu polynomial interpolation formula like numerical stability and 12 ef...

متن کامل

Computational aspects of multivariate polynomial interpolation

The paper is concerned with the practical implementation of two methods to compute the solution of polynomial interpolation problems. In addition to a description of the implementation, practical results and several improvements will be discussed, focusing on speed and robustness of the algorithms under consideration.

متن کامل

Algebraic Aspects of Polynomial Interpolation in Several Variables

This paper summarizes relations between the constructive theory of polynomial ideals and polynomial interpolation in several variables. The main ingredient is a generalization of the algorithm for division with remainder to \quotients" of polynomials and nite sets of polynomi-als. x1. Introduction When compared to the univariate case, polynomial interpolation in several variables turns out to b...

متن کامل

NUMERICAL SOLUTION OF ONE-DIMENSIONAL HEAT AND WAVE EQUATION BY NON-POLYNOMIAL QUINTIC SPLINE

This paper present a novel numerical algorithm for the linear one-dimensional heat and wave equation. In this method, a nite dierenceapproach had been used to discrete the time derivative while cubic spline isapplied as an interpolation function in the space dimension. We discuss theaccuracy of the method by expanding the equation based on Taylor series andminimize the error. The proposed metho...

متن کامل

MEAN VALUE INTERPOLATION ON SPHERES

In this paper we consider   multivariate Lagrange mean-value interpolation problem, where interpolation parameters are integrals over spheres. We have   concentric spheres. Indeed, we consider the problem in three variables when it is not correct.  

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010