Validation of Linear Scaling Semiempirical LocalSCF Method.

نویسندگان

  • Victor M Anisimov
  • Vladislav L Bugaenko
  • Vladimir V Bobrikov
چکیده

The numerical accuracy of linear scaling semiempirical methods LocalSCF and MOZYME is analyzed in comparison to conventional matrix diagonalization with respect to a variety of molecular properties including conformational energy, dipole moment, atomic charges, and bond orders. Major semiempirical MNDO, AM1, PM3, and PM5 Hamiltonians were considered in the study. As the numerical tests demonstrate, both LocalSCF and MOZYME reasonably reproduce matrix diagonalization results with the deviations being below the accuracy of semiempirical methods. However, the economical LocalSCF memory consumption and faster calculations are more beneficial for the quantum-mechanical modeling of large biological systems. The computational performance of the LocalSCF method is tested on the conformational energy calculation of a series of molecular dynamics snapshots of insulin in a large box of water.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parameterization and efficient implementation of a solvent model for linear-scaling semiempirical quantum mechanical calculations of biological macromolecules

A method is developed to include solvation effects in linear-scaling semiempirical quantum calculations. Favorable scaling of computational effort for large molecules is achieved using a preconditioned conjugate gradient technique in conjunction with a linear-scaling recursive bisection method for evaluation of electrostatic interactions. The method requires approximately 30% computational over...

متن کامل

Accurate macromolecular crystallographic refinement: incorporation of the linear scaling, semiempirical quantum-mechanics program DivCon into the PHENIX refinement package.

Macromolecular crystallographic refinement relies on sometimes dubious stereochemical restraints and rudimentary energy functionals to ensure the correct geometry of the model of the macromolecule and any covalently bound ligand(s). The ligand stereochemical restraint file (CIF) requires a priori understanding of the ligand geometry within the active site, and creation of the CIF is often an er...

متن کامل

Transannular Interaction in N-Aryl-5-Azocanones, A Semiempirical Quantum Mechanics and UV Spectroscopy Studies

The ability of the present semiempirical quantum mechanics methods are surveyed for reproducing the transannular interaction in the bifunctional N-phenyl-5-azocanones. The AM1 method is the best with the order of reliability being Am1, PM3, MNDO and MINDO/3. AM1 calculations were then carried out for quantification of transannular interaction. The n(o) ionization potential has be...

متن کامل

Parametrization of an Orbital-Based Linear-Scaling Quantum Force Field for Noncovalent Interactions

We parametrize a linear-scaling quantum mechanical force field called mDC for the accurate reproduction of nonbonded interactions. We provide a new benchmark database of accurate ab initio interactions between sulfur-containing molecules. A variety of nonbond databases are used to compare the new mDC method with other semiempirical, molecular mechanical, ab initio, and combined semiempirical qu...

متن کامل

Numerical solution of linear control systems using interpolation scaling functions

The current paper proposes a technique for the numerical solution of linear control systems.The method is based on Galerkin method, which uses the interpolating scaling functions. For a highly accurate connection between functions and their derivatives, an operational matrix for the derivatives is established to reduce the problem to a set of algebraic equations. Several test problems are given...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of chemical theory and computation

دوره 2 6  شماره 

صفحات  -

تاریخ انتشار 2006