Parallelized traveling cluster approximation to study numerically spin-fermion models on large lattices.

نویسندگان

  • Anamitra Mukherjee
  • Niravkumar D Patel
  • Chris Bishop
  • Elbio Dagotto
چکیده

Lattice spin-fermion models are important to study correlated systems where quantum dynamics allows for a separation between slow and fast degrees of freedom. The fast degrees of freedom are treated quantum mechanically while the slow variables, generically referred to as the "spins," are treated classically. At present, exact diagonalization coupled with classical Monte Carlo (ED + MC) is extensively used to solve numerically a general class of lattice spin-fermion problems. In this common setup, the classical variables (spins) are treated via the standard MC method while the fermion problem is solved by exact diagonalization. The "traveling cluster approximation" (TCA) is a real space variant of the ED + MC method that allows to solve spin-fermion problems on lattice sizes with up to 10(3) sites. In this publication, we present a novel reorganization of the TCA algorithm in a manner that can be efficiently parallelized. This allows us to solve generic spin-fermion models easily on 10(4) lattice sites and with some effort on 10(5) lattice sites, representing the record lattice sizes studied for this family of models.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

وابستگی نظم پیچشی به درجه همسانگردی در هامیلتونی هابارد شبکه‌های مثلثی

Investigation of broken symmetry phases with long range order in strongly correlated electron systems is among subjects that have always been of interest to condensed matter scientists. In this paper we tried to study the existence of the 120 degrees magnetic spiral order, based on anisotropy in geometrically frustrated triangular lattices, using variational cluster approximation. We observed t...

متن کامل

گذار مات رسانا-نارسانا در مدل هابارد دوبعدی نیمه پر

We study the Mott transition in the two dimensional Hubbard model by using the variational cluster approximation. The transition potential obtained is roughly Uc ≈ 2 and 6 for square and triangular lattices, respectively. A comparison between results of this approximation and other quantum cluster methods is presented. Our zero-temperature calculation at strong coupling show that the transition...

متن کامل

T-Rough Sets Based on the Lattices

The aim of this paper is to introduce and study set- valued homomorphism on lattices and T-rough lattice with respect to a sublattice. This paper deals with T-rough set approach on the lattice theory. The result of this study contributes to, T-rough fuzzy set and approximation theory and proved in several papers. Keywords: approximation space; lattice; prime ideal; rough ideal; T-rough set; set...

متن کامل

Criticality and parallelism in combinatorial optimization

Local search methods constitute one of the most successful approaches to solving large-scale combinatorial optimization problems. As these methods are increasingly parallelized, optimization performance initially improves but then abruptly degrades to no better than that of random search beyond a certain point. The existence of this transition is demonstrated for a family of generalized spin-gl...

متن کامل

How to Compute Loop Corrections to Bethe Approximation

We introduce a method for computing corrections to Bethe approximation for spin models on arbitrary lattices. Unlike cluster variational methods, the new approach takes into account fluctuations on all length scales. The derivation of the leading correction is explained and applied to two simple examples: the ferromagnetic Ising model on d-dimensional lattices, and the spin glass on random grap...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 91 6  شماره 

صفحات  -

تاریخ انتشار 2015