Transient release of calcium from inositol 1,4,5-trisphosphate-specific stores regulates mouse preimplantation development.

نویسندگان

  • J J Stachecki
  • D R Armant
چکیده

Inositol 1,4,5-trisphosphate can regulate growth and differentiation by modulating the release of intracellular Ca2+ in a variety of cellular systems, and it is involved in oocyte activation. Recent studies suggest that mammalian preimplantation development may also be regulated by the release of Ca2+ from intracellular stores. The rate of cavitation and cell division was accelerated after a transient elevation of intracellular Ca2+ levels was induced in morulae by exposure to ethanol or ionomycin. Embryos exposed to BAPTA-AM, a chelator of intracellular Ca2+, exhibited a brief dose-dependent reduction in basal Ca2+ levels, a temporal inhibition of ionophore-induced Ca2+ signalling and a subsequent delay in blastocoel formation. BAPTA-AM at 0.5 microM did not significantly alter the basal intracellular calcium level, but chelated Ca2+ that was released after ethanol exposure and thereby attenuated the ethanol-induced acceleration of cavitation. BAPTA-AM also inhibited cell division to the 16-cell stage in a dose-dependent manner, which correlated with the inhibition of cavitation. Thimerosal and inositol 1,4,5-trisphosphate significantly elevated the intracellular Ca2+ concentration in mouse morula-stage embryos, providing evidence for the existence of inositol 1,4,5-trisphosphate-sensitive Ca2+ stores. Although caffeine failed to release intracellular Ca2+, ryanodine induced a small biphasic release of Ca2+, suggesting that ryanodine-sensitive Ca2+ stores may also exist in mouse embryos. Morulae exposed to the calmodulin inhibitor W-7 exhibited a dose-dependent delay in blastocoel formation. A 4 hour exposure to 10 microM W-7 did not significantly alter cavitation, but attenuated the ionophore-induced stimulation of blastocoel formation. This finding suggests that the developmental effects produced through Ca2+ signalling are mediated by calmodulin. Our results demonstrate that Ca2+ release in mouse morulae occurs predominantly through the inositol 1,4,5-trisphosphate receptor, and that alteration of intracellular Ca2+ levels can accelerate or delay embryonic growth and differentiation, providing a mechanistic link between the regulation of oocyte and embryonic development.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Release of calcium from inositol 1,4,5-trisphosphate receptor-regulated stores by HIV-1 Tat regulates TNF-alpha production in human macrophages.

HIV-1 protein Tat is neurotoxic and increases macrophage and microglia production of TNF-alpha, a cytopathic cytokine linked to the neuropathogenesis of HIV dementia. Others have shown that intracellular calcium regulates TNF-alpha production in macrophages, and we have shown that Tat releases calcium from inositol 1,4, 5-trisphosphate (IP3) receptor-regulated stores in neurons and astrocytes. ...

متن کامل

Regulation of intracellular calcium in the mouse egg: calcium release in response to sperm or inositol trisphosphate is enhanced after meiotic maturation.

Fertilization of the immature, prophase I-arrested mouse oocyte produces multiple Ca2+ transients similar to those of the mature, metaphase II egg; however, the first Ca2+ transient is much lower in amplitude and shorter in duration. In contrast to prophase I-arrested oocytes, maturing oocytes fertilized after germinal vesicle breakdown have first Ca2+ transients similar to those of mature fert...

متن کامل

Activation of calcium entry by the tumor promoter thapsigargin in parotid acinar cells. Evidence that an intracellular calcium pool and not an inositol phosphate regulates calcium fluxes at the plasma membrane.

The depletion of an inositol 1, 4,5-trisphosphate-sensitive intracellular Ca2+ pool has been proposed to be the signal for Ca2+ entry in agonist-activated cells. Consistent with this idea, thapsigargin, which releases intracellular Ca2+ without inositol phosphate formation, has been reported to activate Ca2+ entry in certain cells. We now report the effects of thapsigargin on Ca2+ entry in paro...

متن کامل

Regulation of mouse egg activation: presence of ryanodine receptors and effects of microinjected ryanodine and cyclic ADP ribose on uninseminated and inseminated eggs.

Sperm-induced activation of mammalian eggs is associated with a transient increase in Ca2+ concentrations thought to be derived from inositol 1,4,5-trisphosphate-sensitive and -insensitive intracellular stores. Whereas the importance of inositol 1,4,5-trisphosphate-sensitive Ca2+ stores has been evaluated, the identity and role of inositol 1,4,5-trisphosphate-insensitive stores are poorly under...

متن کامل

Multiple stores of calcium are released in the sea urchin egg during fertilization.

Fertilization initiates a transient increase in intracellular Ca2+ principally by Ca2+ release from intracellular stores. Possible multiple Ca2+ stores and multiple receptor regulation of the same store have been reported. Here we report the presence of at least two independent intracellular Ca2+ stores in the sea urchin egg, which are released during fertilization. Ca2+ release from one store ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Development

دوره 122 8  شماره 

صفحات  -

تاریخ انتشار 1996