Optimized hole injection with strong electron acceptors at organic-metal interfaces.
نویسندگان
چکیده
The energy-level alignment at interfaces between three electroactive conjugated organic materials and Au was systematically varied by adjusting the precoverage of the metal substrate with the electron acceptor tetrafluoro-tetracyanoquinodimethane (F4-TCNQ). Photoelectron spectroscopy revealed that electron transfer from Au to adsorbed F4-TCNQ was responsible for lowering the hole-injection barrier by as much as 1.2 eV. This novel interface modification scheme is independent of the charge transfer complex formation ability of the organic materials with the electron acceptor.
منابع مشابه
Organic/Metal Interfaces: Electronic and Structural Properties
This work addresses several important topics of the field of organic electronics. The focus lies on organic/metal interfaces, which exist in all organic electronic devices. Physical properties of such interfaces are crucial for device performance. Four main topics have been covered: (i) the impact of molecular orientation on the energy levels, (ii) energy level tuning with strong electron accep...
متن کاملElectronic and structural properties of interfaces between electron donor & acceptor molecules and conductive electrodes
The present work is embedded in the field of organic electronics, where charge injection into any kind of device is critically determined by the electronic and structural properties of the interfaces between the electrodes and the conjugated organic materials (COMs). Three main topics are addressed: energy level tuning with new or so far unexplored strong electron (i) donor and (ii) acceptor ma...
متن کاملBand alignment at metal/organic and metal/oxide/organic interfaces
Charge injection at metal/organic interfaces dictates the performance, lifetime, and stability of organic electronic devices. We demonstrate that interface dipole theory, originally developed to describe Schottky contacts at metal/semiconductor interfaces, can also accurately describe the injection barriers in real organic electronic devices. It is found that theoretically predicted hole inject...
متن کاملMolecular helices as electron acceptors in high-performance bulk heterojunction solar cells
Despite numerous organic semiconducting materials synthesized for organic photovoltaics in the past decade, fullerenes are widely used as electron acceptors in highly efficient bulk-heterojunction solar cells. None of the non-fullerene bulk heterojunction solar cells have achieved efficiencies as high as fullerene-based solar cells. Design principles for fullerene-free acceptors remain unclear ...
متن کاملNon-Fullerene Acceptor-Based Solar Cells: From Structural Design to Interface Charge Separation and Charge Transport
The development of non-fullerene small molecule as electron acceptors is critical for overcoming the shortcomings of fullerene and its derivatives (such as limited absorption of light, poor morphological stability and high cost). We investigated the electronic and optical properties of the two selected promising non-fullerene acceptors (NFAs), IDIC and IDTBR, and five conjugated donor polymers ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review letters
دوره 95 23 شماره
صفحات -
تاریخ انتشار 2005