Fast Hankel transform by fast sine and cosine transforms: the Mellin connection
نویسنده
چکیده
The Hankel transform of a function by means of a direct Mellin approach requires sampling on an exponential grid, which has the disadvantage of coarsely undersampling the tail of the function. A novel modified Hankel transform procedure, not requiring exponential sampling, is presented. The algorithm proceeds via a three-step Mellin approach to yield a decomposition of the Hankel transform into a sine, a cosine and an inversion transform, which can be implemented by means of fast sine and cosine transforms.
منابع مشابه
Fast Hankel Transforms
JOHANSEN, H. K., and SORENSEN, K., 1979, Fast Hankel Transforms, Geophysical Prospecting 27, 876-901. Inspired by the linear filter method introduced by D. P. Ghosh in rg7o we have developed a general theory for numerical evaluation of integrals of the Hankel type: m g(r) = Sf(A)hJ,(Ar)dh; v > I. II Replacing the usual sine interpolating function by sinsh (x) = a . sin (xx)/sinh (UTW), where th...
متن کاملA Polynomial Approach to Fast Algorithms for Discrete Fourier-cosine and Fourier-sine Transforms
The discrete Fourier-cosine transform (cos-DFT), the discrete Fourier-sine transform (sin-DFT) and the discrete cosine transform (DCT) are closely related to the discrete Fourier transform (DFT) of real-valued sequences. This paper describes a general method for constructing fast algorithms for the cos-DFT, the sin-DFT and the DCT, which is based on polynomial arithmetic with Chebyshev polynomi...
متن کاملCalculation of One-dimensional Forward Modelling of Helicopter-borne Electromagnetic Data and a Sensitivity Matrix Using Fast Hankel Transforms
The helicopter-borne electromagnetic (HEM) frequency-domain exploration method is an airborne electromagnetic (AEM) technique that is widely used for vast and rough areas for resistivity imaging. The vast amount of digitized data flowing from the HEM method requires an efficient and accurate inversion algorithm. Generally, the inverse modelling of HEM data in the first step requires a precise a...
متن کاملDiscrete Cosine Transforms on Quantum Computers
A classical computer does not allow to calculate a discrete cosine transform on N points in less than linear time. This trivial lower bound is no longer valid for a computer that takes advantage of quantum mechanical superposition, entanglement, and interference principles. In fact, we show that it is possible to realize the discrete cosine transforms and the discrete sine transforms of size N ...
متن کاملThe Algebraic Approach to the Discrete Cosine and Sine Transforms and Their Fast Algorithms
It is known that the discrete Fourier transform (DFT) used in digital signal processing can be characterized in the framework of representation theory of algebras, namely as the decomposition matrix for the regular module C[Zn] = C[x]/(x − 1). This characterization provides deep insight on the DFT and can be used to derive and understand the structure of its fast algorithms. In this paper we pr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEEE Trans. Signal Processing
دوره 48 شماره
صفحات -
تاریخ انتشار 2000