Peak algebras , paths in the Bruhat graph and Kazhdan - Lusztig polynomials ∗

نویسندگان

  • Francesco Brenti
  • Fabrizio Caselli
چکیده

We obtain a nonrecursive combinatorial formula for the Kazhdan-Lusztig polynomials which holds in complete generality and which is simpler and more explicit than any existing one, and which cannot be linearly simplified. Our proof uses a new basis of the peak subalgebra of the algebra of quasisymmetric functions. Résumé. On montre une formule combinatoire pour les polynômes de Kazhdan-Lusztig qui est valable en toute généralité. Cette formule est plus simple et plus explicite que toutes les autres formules connues; de plus, elle ne peut pas être simplifié lineairement. La preuve utilise une nouvelle base pour la sousalgèbre des sommets de l’algèbre des fonctions quasisymmetriques.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quasisymmetric Functions and Kazhdan-lusztig Polynomials

We associate a quasisymmetric function to any Bruhat interval in a general Coxeter group. This association can be seen to be a morphism of Hopf algebras to the subalgebra of all peak functions, leading to an extension of the cd-index of convex polytopes. We show how the Kazhdan-Lusztig polynomial of the Bruhat interval can be expressed in terms of this complete cd-index and otherwise explicit c...

متن کامل

Lattice Paths and Kazhdan-lusztig Polynomials

In their fundamental paper [18] Kazhdan and Lusztig defined, for every Coxeter group W , a family of polynomials, indexed by pairs of elements of W , which have become known as the Kazhdan-Lusztig polynomials of W (see, e.g., [17], Chap. 7). These polynomials are intimately related to the Bruhat order of W and to the geometry of Schubert varieties, and have proven to be of fundamental importanc...

متن کامل

Combinatorics on Bruhat Graphs and Kazhdan-Lusztig Polynomials

the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract We establish three new combinatorial results on a relation between irregularity of Bruhat graphs and Kazhdan-Lusztig polynomials for Bruhat intervals in all crystallographic Coxeter systems. For our discussion, De-odhar's ...

متن کامل

Kazhdan-Lusztig-Stanley polynomials and quadratic algebras I M.J.Dyer

In [KL], Kazhdan and Lusztig associate a polynomial to each Bruhat interval in a Coxeter group; some of these “Kazhdan-Lusztig” polynomials now play an important role in several areas of representation theory. A similar family of polynomials has been associated to face latices of convex polytopes (see Stanley [St]). Both families of polynomials remain poorly understood in general, though they a...

متن کامل

Combinatorial invariance of Kazhdan-Lusztig polynomials on intervals starting from the identity

We show that for Bruhat intervals starting from the identity in Coxeter groups the conjecture of Lusztig and Dyer holds, that is, the R-polynomials and the Kazhdan-Lusztig polynomials defined on [e, u] only depend on the isomorphism type of [e, u]. To achieve this we use the purely poset-theoretic notion of special matching. Our approach is essentially a synthesis of the explicit formula for sp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014