On realizing higher efficiency polymer solar cells using a textured substrate platform.
نویسندگان
چکیده
and emergence of new conjugated polymers with tailored energy levels. [ 4–6 ] Power conversion effi ciency (PCE) exceeding 7% has recently been achieved. [ 4 ] The state-of-the-art devices are so called bulk-heterojunction (BHJ) type in which the PV activelayer is coated from a blend of donor and acceptor species. The nanoscale nature of phase separation between the donors and acceptors in a BHJ active-layer alleviates the mismatch between exciton diffusion length ( ∼ 10 nm) and optical absorption length ( > 100 nm). However, there still exists a mismatch between optical absorption length and charge transport scale. BHJ activelayers tend to suffer from cul-de-sacs in the charge transport pathways, and hole mobilities in conjugated polymers remain low. Both of these factors lead to recombination losses, higher series resistances and lower fi ll-factors. [ 7 ] Thus, it is imperative to develop fabrication methodologies that can enable effi cient optical absorption in fi lms thinner than optical absorption length. The most desirable methodology would be one which can also substantially improve absorption at the band edge of conjugated polymers, which usually lies in the red/near-infrared region, and where signifi cant amount of solar fl ux is also located. It is more so important because the charge carriers photoexcited at the band edge were found to have a higher dissociation effi ciency than the ones excited at higher energies. [ 8 ]
منابع مشابه
High Performance of PEDOT:PSS/n-Si Solar Cells Based on Textured Surface with AgNWs Electrodes
Hybrid heterojunction solar cells (HHSCs) have gained extensive research and attention due to simple device structure and low-cost technological processes. Here, HHSCs are presented based on a highly transparent conductive polymer poly(3,4ethylenedioxythiophene):poly(styrenesulfonate)(PEDOT:PSS) directly spin-coated on an n-type crystalline silicon with microscale surface textures, which are pr...
متن کاملInvestigation the effect of substrate photo-electrode based on screen method on performance of dye-sensitized solar cells
In this paper we studied preparation of working films of dye-sensitized solar cells using screen printed method. The organic dye based on phenoltiazine with cyanoacrylic acid as the electron donor group utilized as photosensitizer. Fluorine-doped thin oxide FTO coated glass is transparent electrically conductive and ideal for use in dye-sensitized solar cells. FTO glass was coated by screen pri...
متن کاملComparison of Light Trapping in Silicon Nanowire and Surface Textured Thin-Film Solar Cells
The optics of axial silicon nanowire solar cells is investigated and compared to silicon thin-film solar cells with textured contact layers. The quantum efficiency and short circuit current density are calculated taking a device geometry into account, which can be fabricated by using standard semiconductor processing. The solar cells with textured absorber and textured contact layers provide a ...
متن کاملPreparation of CdIn2S4-CdS nanocomposite via a green route and using them in dot-sensitized solar cells for boosting efficiency
In this work In2S3 and CdS nanoparticles were prepared by a simple hydrothermal method and then annealed at 500 °C for 2 h in an Ar gas until CdIn2S4(CdIS)-CdS nanocomposites were formed. Afterwards, efficiency of the as-synthesized CdIS-CdS nanocomposite in quantum dot-sensitized solar cells (QDSSCs) was evaluated. For this purpose, the as-prepared CdIS-CdS nanocomposites were deposited on TiO...
متن کاملStudy the Effect of Silicon Nanowire Length on Characteristics of Silicon Nanowire Based Solar Cells by Using Impedance Spectroscopy
Silicon nanowire (SiNW) arrays were produced by electroless method on polycrystalline Si substrate, in HF/ AgNO3 solution. Although the monocrystalline silicon wafer is commonly utilized as a perfect substrate, polycrystalline silicon as a low cost substrate was used in this work for photovoltaic applications. In order to study the influence of etching time (which affects the SiNWs length) on d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Advanced materials
دوره 23 1 شماره
صفحات -
تاریخ انتشار 2011