Ternary complex of plasmid DNA electrostatically assembled with polyamidoamine dendrimer and chondroitin sulfate for effective and secure gene delivery.
نویسندگان
چکیده
The purpose of this study was to develop a ternary complex of plasmid DNA (pDNA) electrostatically assembled with polyamidoamine (PAMAM) dendrimer and chondroitin sulfate (CS) for effective and secure gene delivery. PAMAM dendrimers are new cationic polymers that are expected to be used as gene delivery vectors. However, cationic non-viral gene vectors showed cytotoxicity by binding to negative cellular membranes. We therefore prepared a ternary complex by adding CS, an anionic polymer, and examined its usefulness. The pDNA/PAMAM dendrimer complex (PAMAM dendriplex) and the PAMAM dendriplex coated by CS (CS complex) showed nanoparticles with positive ζ-potential and negative ζ-potential, respectively. The CS complex had no cytotoxicity against B16-F10 cells and no agglutination activity, although severe cytotoxicity and high agglutination were observed in the PAMAM dendriplex. As a result of an in vitro gene expression study of B16-F10 cells, not only the PAMAM dendriplex but also the CS complex showed high transfection efficiency. The transfection efficiency of the CS complex was significantly inhibited by clathrin-mediated endocytosis inhibitor (chlorpromazine), caveolae-mediated endocytosis inhibitor (genistein), and hypothermia. Tail-vein injection of the CS complex into mice led to significantly higher gene expression in the spleen than the PAMAM dendriplex. Thus, the ternary complex of pDNA electrostatically assembled with PAMAM denriplex and CS showed safe high gene expression in the spleen. This vector is expected to be useful for useful gene delivery.
منابع مشابه
The development of a gene vector electrostatically assembled with a polysaccharide capsule.
The purpose of this study was to develop a gene vector electrostatically assembled with a polysaccharide capsule. We used pDNA/polyethylenimine (PEI) complexes as efficient non-viral vectors. The pDNA/PEI complex was electrostatically encapsulated with various polysaccharides such as fucoidan, lambda-carrageenan, xanthan gum, alginic acid, hyaluronic acid, and chondroitin sulfate (CS). The pDNA...
متن کاملOcular gene delivery systems using ternary complexes of plasmid DNA, polyethylenimine, and anionic polymers.
In this experiment, we developed anionic ternary complexes for effective and safe ocular gene delivery. Ternary complexes were constructed by coating plasmid DNA (pDNA)/polyethylenimine (PEI) complex with anionic polymers such as γ-polyglutamic acid (γ-PGA) and chondroitin sulfate (CS). The cationic pDNA/PEI complex showed high gene expression on the human retinal pigment epithelial cell line, ...
متن کاملAn Electrostatically Self-Assembled Ternary Nanocomplex as a Non-Viral Vector for the Delivery of Plasmid DNA into Human Adipose-Derived Stem Cells.
In this study, we developed electrostatically self-assembled ternary nanocomplexes as a safe and effective non-viral vector for the delivery of plasmid DNA (pDNA) into human adipose-derived stem cells (hASCs). Although polyethylenimine (PEI) polymers initially showed excellent performance as gene delivery carriers, their broad use has been limited by cytotoxicity resulting from their strong pos...
متن کاملSynthesis and characterization of supramolecule self-assembly polyamidoamine (PAMAM) G1-G1 NH2, CO2H end group Megamer
Supramolecule self assembly polyamidoamine (PAMAM) dendrimer refers to the chemical systems made up of a discrete number of assembled molecular subunits or components. These strategies involve the covalent assembly of hierarchical components reactive monomers, branch cells or dendrons around atomic or molecular cores according to divergent/convergent dendritic branching principles, systematic f...
متن کاملPotential use of polypseudorotaxanes of pegylated polyamidoamine dendrimer with cyclodextrins as novel sustained release systems for DNA.
In this study, we demonstrated the potential use of polypseudorotaxanes (PPRXs) of polyethylene glycol (PEG, molecular weight: 2000)-grafted polyamidoamine dendrimer (PEG-dendrimer) with cyclodextrins (CyDs) as novel sustained release systems for plasmid DNA (pDNA). PEG-dendrimer/pDNA complex formed PPRXs with α-CyD and γ-CyD solutions, but not with β-CyD solution. In the PEG-dendrimer/CyDs PPR...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biological & pharmaceutical bulletin
دوره 37 4 شماره
صفحات -
تاریخ انتشار 2014