Influence of noncontact dissipation in the tapping mode: Attempt to extract quantitative information on the surface properties with the local force probe method
نویسندگان
چکیده
In the Tapping mode, a variation of the oscillation amplitude and phase as a function of the tip sample distance is the necessary measurement to access quantitatively to the properties of the surface. In the present work, we give a systematic comparison between experimental data recorded on two surfaces, phase and amplitude, and theoretical curves. With an interaction between the tip and the surface taking into account an attractive and a repulsive term, the analytical approach is unable to properly describe the relationship between the phase variation and the oscillation amplitude variation. When an additional dissipation term is involved, due to the attractive interaction between the tip and the surface, the model gives a good agreement with the recorded data. Particularly, the trends in the phase variations related to the noncontact situations have been found to be amenable to an analysis based upon a simple viscoelastic behavior of the surface. @#
منابع مشابه
Application of Scanning Electron and Atomic Force Mode Microscopy on inscription from Proto-Elamite period in Tappeh Sofalin
The study of cultural heritage artifacts and the research of a protection and restoration intervention create with - and are often limited to - a complete characterization of their surface. This is not only factual for museum objects, but also for archaeological artifacts, because the object as it was discovered may contain precious unknown information that could be lost by too much aggressive ...
متن کاملMolecular dynamic simulation of tip-polymer interaction in tapping-mode atomic force microscopy
We present a molecular dynamic study of the interaction between an amorphous silica tip (SiO 2) and an amorphous poly-(methyl-methacrylate) substrate under conditions relevant for tapping-mode atomic force microscopy. To capture the actual dynamics of the tip, we use the dynamic contact simulation method [Kim et al., J. Appl. Phys. 112, 094325 (2012)]. We obtain force-displacement relationships...
متن کاملScanning impedance microscopy (SIM): A novel approach for AC transport imaging
Scanning Impedance Microscopy (SIM) is one of the novel scanning probe microscopy (SPM) techniques, which has been developed to taking image from sample surface, providing quantitative information with high lateral resolution on the interface capacitance, and investigating the local capacitance–voltage (C–V) behavior of the interface and AC transport properties. The SIM is an ordinary AFM equip...
متن کاملScanning impedance microscopy (SIM): A novel approach for AC transport imaging
Scanning Impedance Microscopy (SIM) is one of the novel scanning probe microscopy (SPM) techniques, which has been developed to taking image from sample surface, providing quantitative information with high lateral resolution on the interface capacitance, and investigating the local capacitance–voltage (C–V) behavior of the interface and AC transport properties. The SIM is an ordinary AFM equip...
متن کاملSensitivity Analysis of Frequency Response of Atomic Force Microscopy in Liquid Environment on Cantilever's Geometrical Parameters
In this paper, the non-linear dynamic response of rectangular atomic force microscopy in tapping mode is considered. The effect of cantilever’s geometrical parameters (e.g., cantilever length, width, thickness, tip length and the angle between the cantilever and the sample's surface in liquid environment has been studied by taking into account the interaction forces. Results indicate that the r...
متن کامل