Object Library of Algorithms for Dynamic Optimization Problems: Benchmarking SQP and Nonlinear Interior Point Methods

نویسندگان

  • Jacek Blaszczyk
  • Andrzej Karbowski
  • Krzysztof Malinowski
چکیده

The main purpose of this paper is to describe the design, implementation and possibilities of our object-oriented library of algorithms for dynamic optimization problems. We briefly present library classes for the formulation and manipulation of dynamic optimization problems, and give a general survey of solver classes for unconstrained and constrained optimization. We also demonstrate methods of derivative evaluation that we used, in particular automatic differentiation. Further, we briefly formulate and characterize the class of problems solved by our optimization classes. The solution of dynamic optimization problems with general constraints is performed by transformation into structured large-scale nonlinear programming problems and applying methods for nonlinear optimization. Two main algorithms of solvers for constrained dynamic optimization are presented in detail: the sequential quadratic programming (SQP) exploring the multistage structure of the dynamic optimization problem during the solution of a sequence of quadratic subproblems, and the nonlinear interior-point method implemented in a general-purpose large-scale optimizer IPOPT. At the end, we include a typical numerical example of the application of the constrained solvers to a large-scale discrete-time optimal control problem and we use the performance profiles methodology to compare the efficiency and robustness of different solvers or different options of the same solver. In conclusions, we summarize our experience gathered during the library development.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interior point SQP strategies for large-scale, structured process optimization problems

Successive Quadratic Programming (SQP) has been the method of choice for the solution of many nonlinear programming problems in process engineering. However, for the solution of large problems with SQP based codes, the combinatorial complexity associated with active set quadratic programming (QP) methods can be a bottleneck in exploiting the problem structure. In this paper, we examine the meri...

متن کامل

Analysis of Inexact Trust-Region Interior-Point SQP Algorithms

In this paper we analyze inexact trust–region interior–point (TRIP) sequential quadra– tic programming (SQP) algorithms for the solution of optimization problems with nonlinear equality constraints and simple bound constraints on some of the variables. Such problems arise in many engineering applications, in particular in optimal control problems with bounds on the control. The nonlinear constr...

متن کامل

Analysis of Inexact Trust { Region Interior { Point Sqpalgorithmsmatthias

In this paper we analyze inexact trust{region interior{point (TRIP) sequential quadra{ tic programming (SQP) algorithms for the solution of optimization problems with nonlinear equality constraints and simple bound constraints on some of the variables. Such problems arise in many engineering applications, in particular in optimal control problems with bounds on the control. The nonlinear constr...

متن کامل

A Truncated SQP Method Based on Inexact Interior-Point Solutions of Subproblems

We consider sequential quadratic programming (SQP) methods applied to optimization problems with nonlinear equality constraints and simple bounds. In particular, we propose and analyze a truncated SQP algorithm in which subproblems are solved approximately by an infeasible predictor-corrector interior-point method, followed by setting to zero some variables and some multipliers so that compleme...

متن کامل

Primal-dual path-following algorithms for circular programming

Circular programming problems are a new class of convex optimization problems that include second-order cone programming problems as a special case. Alizadeh and Goldfarb [Math. Program. Ser. A 95 (2003) 3-51] introduced primal-dual path-following algorithms for solving second-order cone programming problems. In this paper, we generalize their work by using the machinery of Euclidean Jordan alg...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied Mathematics and Computer Science

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2007