Lasso adjustments of treatment effect estimates in randomized experiments.

نویسندگان

  • Adam Bloniarz
  • Hanzhong Liu
  • Cun-Hui Zhang
  • Jasjeet S Sekhon
  • Bin Yu
چکیده

We provide a principled way for investigators to analyze randomized experiments when the number of covariates is large. Investigators often use linear multivariate regression to analyze randomized experiments instead of simply reporting the difference of means between treatment and control groups. Their aim is to reduce the variance of the estimated treatment effect by adjusting for covariates. If there are a large number of covariates relative to the number of observations, regression may perform poorly because of overfitting. In such cases, the least absolute shrinkage and selection operator (Lasso) may be helpful. We study the resulting Lasso-based treatment effect estimator under the Neyman-Rubin model of randomized experiments. We present theoretical conditions that guarantee that the estimator is more efficient than the simple difference-of-means estimator, and we provide a conservative estimator of the asymptotic variance, which can yield tighter confidence intervals than the difference-of-means estimator. Simulation and data examples show that Lasso-based adjustment can be advantageous even when the number of covariates is less than the number of observations. Specifically, a variant using Lasso for selection and ordinary least squares (OLS) for estimation performs particularly well, and it chooses a smoothing parameter based on combined performance of Lasso and OLS.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High-dimensional regression adjustments in randomized experiments.

We study the problem of treatment effect estimation in randomized experiments with high-dimensional covariate information and show that essentially any risk-consistent regression adjustment can be used to obtain efficient estimates of the average treatment effect. Our results considerably extend the range of settings where high-dimensional regression adjustments are guaranteed to provide valid ...

متن کامل

Covariance adjustments for the analysis of randomized field experiments.

BACKGROUND It has become common practice to analyze randomized experiments using linear regression with covariates. Improved precision of treatment effect estimates is the usual motivation. In a series of important articles, David Freedman showed that this approach can be badly flawed. Recent work by Winston Lin offers partial remedies, but important problems remain. RESULTS In this article, ...

متن کامل

Measuring the Return to Online Advertising: Estimation and Inference of Endogenous Treatment Effects

In this paper we aim to conduct inference on the “lift” effect generated by an online advertisement display: specifically we want to analyze if the presence of the brand ad among the advertisements on the page increases the overall number of consumer clicks on that page. A distinctive feature of online advertising is that the ad displays are highly targetedthe advertising platform evaluates the...

متن کامل

Identification of biomarker‐by‐treatment interactions in randomized clinical trials with survival outcomes and high‐dimensional spaces

Stratified medicine seeks to identify biomarkers or parsimonious gene signatures distinguishing patients that will benefit most from a targeted treatment. We evaluated 12 approaches in high-dimensional Cox models in randomized clinical trials: penalization of the biomarker main effects and biomarker-by-treatment interactions (full-lasso, three kinds of adaptive lasso, ridge+lasso and group-lass...

متن کامل

for tests of moderators and model fit in robust variance estimation in meta - regression

Title Page Title: Small-sample adjustments for tests of moderators and model fit in robust variance estimation in meta-regression Abstract Body Background / Context: Randomized experiments are commonly used to evaluate the effectiveness of educational interventions. The main focus in randomized experiments is often on the average treatment effect across all participants in the study, yet when t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 113 27  شماره 

صفحات  -

تاریخ انتشار 2016