On Traveling Wave Solutions of the Θ-equation of Dispersive Type

نویسنده

  • HAILIANG LIU
چکیده

Traveling wave solutions to a class of dispersive models, ut − utxx + uux = θuuxxx + (1− θ)uxuxx, are investigated in terms of the parameter θ, including two integrable equations, the Camassa-Holm equation, θ = 1/3, and the Degasperis-Procesi equation, θ = 1/4, as special models. It was proved in [H. Liu and Z. Yin, Contemporary Mathematics, 2011, 526, pp273–294] that when 1/2 < θ ≤ 1 smooth solutions persist for all time, and when 0 ≤ θ ≤ 2 , strong solutions of the θ-equation may blow-up in finite time, yielding rich traveling wave patterns. This work therefore restricts to only the range θ ∈ [0, 1/2]. It is shown that when θ = 0, only periodic travel wave is permissible, and when θ = 1/2 traveling waves may be solitary, periodic or kink-like waves. For 0 < θ < 1/2, traveling waves such as periodic, solitary, peakon, peaked periodic, cusped periodic, or cusped soliton are all permissible.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Traveling Wave Solutions of the Θ−class of Dispersive Equations

We investigate traveling wave solutions to a class of dispersive models – the θ-equation of the form ut − utxx + uux = θuuxxx + (1− θ)uxuxx, including two integrable equations, the Camassa-Holm equation (θ = 1/3) and the Degasperis-Procesi equation(θ = 1/4) as special models. When 0 ≤ θ ≤ 1 2 , strong solutions of the θ-equation may blow-up in finite time, correspondingly, the traveling wave so...

متن کامل

Complexition and solitary wave solutions of the (2+1)-dimensional dispersive long wave equations

In this paper, the coupled dispersive (2+1)-dimensional long wave equation is studied. The traveling wave hypothesis yields complexiton solutions. Subsequently, the wave equation is studied with power law nonlinearity where the ansatz method is applied to yield solitary wave solutions. The constraint conditions for the existence of solitons naturally fall out of the derivation of the soliton so...

متن کامل

Some traveling wave solutions of soliton family

Solitons are ubiquitous and exist in almost every area from sky to bottom. For solitons to appear, the relevant equation of motion must be nonlinear. In the present study, we deal with the Korteweg-deVries (KdV), Modied Korteweg-de Vries (mKdV) and Regularised LongWave (RLW) equations using Homotopy Perturbation method (HPM). The algorithm makes use of the HPM to determine the initial expansion...

متن کامل

Some new exact traveling wave solutions one dimensional modified complex Ginzburg- Landau equation

‎In this paper‎, ‎we obtain exact solutions involving parameters of some nonlinear PDEs in mathmatical physics; namely the one-‎dimensional modified complex Ginzburg-Landau equation by using the $ (G'/G) $ expansion method‎, homogeneous balance method, extended F-expansion method‎. ‎By ‎using homogeneous balance principle and the extended F-expansion, more periodic wave solutions expressed by j...

متن کامل

Traveling Waves of Some Symmetric Planar Flows of Non-Newtonian Fluids

We present some variants of Burgers-type equations for incompressible and isothermal planar flow of viscous non-Newtonian fluids based on the Cross, the Carreau and the power-law rheology models, and on a symmetry assumption on the flow. We numerically solve the associated traveling wave equations by using industrial data and in order to validate the models we prove existence and uniqueness of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013